精英家教网 > 高中数学 > 题目详情

已知动点Q在圆上运动, P(4,0),连接PQ,求线段PQ中点M的轨迹方程           

 

【答案】

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知点P(10,0),Q为圆x2+y2=16上一点动点,当Q在圆上运动时,求PQ的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知C为圆(x+
2
)2+y2=12的圆心,点A(
2
,0),P
是圆上的动点,点Q在圆的半径CP上,且
MQ
AP
=0,
AP
=2
AM

(1)当点P在圆上运动时,求点Q的轨迹E的方程.
(2)一直线l,原点到l的距离为
3
2
.(i)求证直线l与曲线E必有两个交点.
(ii)若直线l与曲线E的两个交点分别为G、H,求△OGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,3),点P是圆x2+y2-2x-3=0上的动点,Q为线段AP的中点,当点P在圆上运动时,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是圆F1:(x+1)2+y2=16上的动点,点F2(1,0),线段PF2的垂直平分线l与半径F1P交于点Q.
(I)当点P在圆上运动时,求点Q的轨迹C的方程.
(II)已知点M(1,
3
2
),A、B在(1)中所求的曲线C上,且
MA
+
MB
OM
(λ∈R,O是坐标原点),
(i)求直线AB的斜率;
(ii)求证:当△MAB的面积取得最大值时,O是△MAB的重心.

查看答案和解析>>

同步练习册答案