精英家教网 > 高中数学 > 题目详情
已知函数
(1)讨论函数的单调性;
(2)若函数处取得极值,不等式对任意恒成立,求实数的取值范围;
(3)当时,证明不等式 .
(1)上单调递减,在上单调递增;(2);(3)见解析

试题分析:(1)求导数,对参数进行分类讨论,当导函数大于0时,得到增区间,导函数小于0时得到减区间。(2)含参数不等式恒成立问题,一般要把要求参数分离出来,然后讨论分离后剩下部分的最值即可。讨论最值的时候要利用导数判断函数的单调性。(3)证明不等式可以有很多方法,但本题中要利用(1)(2)的结论。构造函数,然后利用函数单调性给予证明。
试题解析:(1)函数的定义域为        1分
时,,从而,故函数上单调递减  3分
时,若,则,从而
,则,从而
故函数上单调递减,在上单调递增;          5分
(2)由(1)得函数的极值点是,故      6分
所以,即
由于,即.              7分
,则
时,;当时,
上单调递减,在上单调递增;           9分
,所以实数的取值范围为          10分
(3)不等式       11分
构造函数,则
上恒成立,即函数上单调递增,      13分
由于,所以,得
      14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ex-ax-1.
(1)求f(x)的单调增区间;
(2)若f(x)在定义域R内单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知可导函数f(x)(x∈R)的导函数f′(x)满足f′(x)>f(x),则不等式ef(x)>f(1)ex的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线与函数的图像有三个相异的交点,则的取值范围为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们把形如y=f(x)φ(x)的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边求对数得ln y=φ(x)lnf(x),两边求导得=φ′(x)·ln f(x)+φ(x)·,于是y′=f(x)φ(x)[φ′(x)·ln f(x)+φ(x)·].运用此方法可以探求得y=x的单调递增区间是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其导函数为.
(1)若,求函数在点处的切线方程;
(2)求的单调区间;
(3)若为整数,若时,恒成立,试求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)若对于任意的,都存在,使得,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x3+x,若a,b,,且a+b>0,a+c>0,b+c>0,则f(a)+f(b)+f(c)的值(   )
A.一定大于0B.一定等于0
C.一定小于0D.正负都有可能

查看答案和解析>>

同步练习册答案