精英家教网 > 高中数学 > 题目详情
已知椭圆的左顶点A(-2,0),过右焦点F且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点A的直线l与椭圆交于点Q,与y轴交于点R,过原点与l平行的直线与椭圆交于点P,求证:为定值.
【答案】分析:(Ⅰ)依题意,可求得a=2,b2=3,从而可得椭圆C的方程;
(Ⅱ)由题意知,直线AQ,OP斜率存在,故设为k,则直线AQ的方程为y=k(x+2),直线OP的方程为y=kx.可得R(0,2k),|AR|=2,A(x1,y1),Q(x2,y2),联立方程组,得:(4k2+3)x2+16k2x+16k2-12=0,利用韦达定理可得x1+x2=-,x1x2=,从而求得|AQ|=;再设y=kx与椭圆交另一点为M(x3,y3),P(x4,y4),可求得,|x4|=,从而得|OP|=;继而可求得的值.
解答:解:(1)a=2,设过右焦点F且垂直于长轴的弦为MN,将M(c,yM)代入椭圆方程+=1,解得yM,…(2分)
=3,可得b2=3.                                                …(4分)
所以,椭圆方程为+=1.                                        …(6分)
(2)由题意知,直线AQ,OP斜率存在,故设为k,则直线AQ的方程为y=k(x+2),直线OP的方程为y=kx.可得R(0,2k),
则|AR|=2,…(8分)
设A(x1,y1),Q(x2,y2),联立方程组
消去y得:(4k2+3)x2+16k2x+16k2-12=0,
x1+x2=-,x1x2=
则|AQ|=|x1-x2|==.      …(11分)
设y=kx与椭圆交另一点为M(x3,y3),P(x4,y4),联立方程组
消去y得(4k2+3)x2-12=0,|x4|=
所以|OP|=|x4|=.                             …(13分)
==2.
所以等于定值2…(15分)
点评:本题主要考椭圆的几何性质,直线与椭圆的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年浙江省杭州市重点高中高考命题比赛数学参赛试卷01(理科)(解析版) 题型:解答题

已知椭圆的左顶点A(-2,0),过右焦点F且垂直于长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点A的直线l与椭圆交于点Q,与y轴交于点R,过原点与l平行的直线与椭圆交于点P,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:2013届湖北武汉部分重点中学(五校)高二下期中文科数学卷(解析版) 题型:选择题

已知椭圆的左顶点为A1,右焦点为F2,点P为该椭圆上一动点,则当取最小值时,的值为(   )

A、        B、3            C、            D、

 

查看答案和解析>>

科目:高中数学 来源:2010年湖北省高二上学期期中考试数学试卷 题型:选择题

已知椭圆的左顶点为,右焦点为,点为该椭圆上一动点,则当取最小值时,的值为                               (     )

A.           B.             C.                 D.

 

查看答案和解析>>

科目:高中数学 来源:2013年江苏省高考数学模拟试卷(二)(解析版) 题型:解答题

已知椭圆的左顶点为A,左、右焦点分别为F1,F2,且圆C:过A,F2两点.
(1)求椭圆标准的方程;
(2)设直线PF2的倾斜角为α,直线PF1的倾斜角为β,当β-α=时,证明:点P在一定圆上;
(3)设椭圆的上顶点为Q,证明:PQ=PF1+PF2

查看答案和解析>>

同步练习册答案