精英家教网 > 高中数学 > 题目详情
(2012•深圳二模)线段AB是圆C1:x2+y2+2x-6y=0的一条直径,离心率为
5
的双曲线C2以A,B为焦点.若P是圆C1与双曲线C2的一个公共点,则|PA|+|PB|=(  )
分析:由题设知双曲线C2的焦距2c=|AB|=2
10
,双曲线的实半轴a=
2
,由P是圆C1与双曲线C2的公共点,知||PA|-|PB||=2
2
,|PA|2+|PB|2=40,由此能求出|PA|+|PB|.
解答:解:∵圆C1:x2+y2+2x-6y=0的半径r=
1
2
4+36
=
10

线段AB是圆C1:x2+y2+2x-6y=0的一条直径,
离心率为
5
的双曲线C2以A,B为焦点,
∴双曲线C2的焦距2c=|AB|=2
10

∵P是圆C1与双曲线C2的一个公共点,
∴||PA|-|PB||=2a,|PA|2+|PB|2=40,
∴|PA|2+|PB|2-2|PA||PB|=4a2
∵c=
10
,e=
c
a
=
5

∴a=
2

∴2|PA||PB|=32,
∴∴|PA|2+|PB|2+2|PA||PB|=(|PA|+|PB|)2=72,
∴|PA|+|PB|=6
2

故选D.
点评:本题考查|PA|+|PB|的值的求法,具体涉及到圆的简单性质,双曲线的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)已知平面向量
a
b
满足条件
a
+
b
=(0,1),
a
-
b
=(-1,2),则
a
b
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)设a,b,c,d∈R,若a,1,b成等比数列,且c,1,d 成等差数列,则下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=
f(x)x
-4lnx
的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)曲线y=(
1
2
)
x
在x=0点处的切线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)执行图中程序框图表示的算法,若输入m=5533,n=2012,则输出d=
503
503
(注:框图中的赋值符号“=”也可以写成“←”或“:=”)

查看答案和解析>>

同步练习册答案