精英家教网 > 高中数学 > 题目详情

函数f(x)=Asin(ωx+φ)(A>0,ω>),|φ|<数学公式)的部分图象如图示,则将y=f(x)的图象向右平移数学公式个单位后,得到的图象解析式为


  1. A.
    y=sin2x
  2. B.
    y=cos2x
  3. C.
    y=sin(2x+数学公式
  4. D.
    y=sin(2x-数学公式
D
分析:通过函数的图象求出A,求出函数的周期,利用周期公式求出ω,函数过(),结合φ的范围,求出φ,推出函数的解析式,通过函数图象的平移推出结果.
解答:由图象知A=1,T=-=,T=π?ω=2,
由sin(2×+φ)=1,|φ|<+φ=
?φ=
?f(x)=sin(2x+),
则图象向右平移个单位后得到的图象解析式为y=sin[2(x-)+]=sin(2x-),
故选D.
点评:本题考查学生的视图能力,函数的解析式的求法,图象的变换,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有两个函数f(x)=asin(kx+
π
3
),g(x)=btan(kx-
π
3
)(k>0),它们的周期之和为
3
2
π
且f(
π
2
)=g(
π
2
),f(
π
4
)
=-
3
g(
π
4
)+1
求这两个函数,并求g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,是函数f(x)=Asin(φx+φ)(其中A>0,φ>0,0<φ<π)的部分图象,则其解析为
y=2sin(
1
2
x+
4
)
y=2sin(
1
2
x+
4
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<
π
2
)的图象与X轴的交点中,相邻两个交点之间的距离为
π
2
,且图象上一个最低点为M(
3
,-2

(Ⅰ)求f(x)的解析式.
(Ⅱ)求函教f(x)单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
,x∈R)的图象的一部分如图所示:
(1)求函数f(x)的解析式;
(2)求函数f(x)图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ)+b的图象如图,则f(x)的解析式和S=f(0)+f(1)+f(2)+…+f(2008)的值分别为(  )

查看答案和解析>>

同步练习册答案