精英家教网 > 高中数学 > 题目详情
已函数f(x)=
x2+1
ax+b
是奇函数,且f(1)=2.
(1)求f(x)的表达式;
(2)设F(x)=
x
f(x)
(x>0).求F(a)+F(
1
a
)的值,并计算F(1)+F(2)+F(3)+F(4)+F(
1
2
)+F(
1
3
)+F(
1
4
)的值.
(1)∵函数f(x)=
x2+1
ax+b
是奇函数,且f(1)=2
b=0
2
a
=2

解得:a=1,b=0.
∴f(x)的表达式:f(x)=
x2+1
x

(2)F(x)=
x
f(x)
=
x2
x2+1

∴F(a)=
a2
a2+1
,F(
1
a
)=
(
1
a
)
2
(
1
a
)
2
+1
=
1
a2+1

∴F(a)+F(
1
a
)=1;
∴F(1)+F(2)+F(3)+F(4)+F(
1
2
)+F(
1
3
)+F(
1
4

=
1
2
+3×1=
7
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已函数f(x)=
x2+1
ax+b
是奇函数,且f(1)=2.
(1)求f(x)的表达式;
(2)设F(x)=
x
f(x)
(x>0).求F(a)+F(
1
a
)的值,并计算F(1)+F(2)+F(3)+F(4)+F(
1
2
)+F(
1
3
)+F(
1
4
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-(a+2)x+alnx,其中常数a>0.
(1)当a>2时,求函数f(x)的单调递增区间;
(2)当a=4时,若函数y=f(x)-m有三个不同的零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-8lnx,
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)若函数f(x)在区间(a,a+1)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已函数f(x)=
x2+1
ax+b
是奇函数,且f(1)=2.
(1)求f(x)的表达式;
(2)设F(x)=
x
f(x)
(x>0).求F(a)+F(
1
a
)的值,并计算F(1)+F(2)+F(3)+F(4)+F(
1
2
)+F(
1
3
)+F(
1
4
)的值.

查看答案和解析>>

同步练习册答案