精英家教网 > 高中数学 > 题目详情
等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为
3
3
,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于
 
分析:先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基地表示,然后利用向量的所成角公式求出所成角即可.
解答:精英家教网解:设AB=2,作CO⊥面ABDE,
OH⊥AB,则CH⊥AB,∠CHO为二面角C-AB-D的平面角CH=
3
,OH=CH•cos∠CHO=1

结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,
AN=EM=CH=
3
AN
=
1
2
(
AC
+
AB
),
EM
=
1
2
AC
-
AE
AN
EM
=
1
2
(
AB
+
.
AC
)•(
1
2
AC
-
AE
)
=
1
2

故EM,AN所成角的余弦值
AN
EM
|
AN
||
EM
|
=
1
6
故答案为:
1
6
点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、下面关于三棱锥P-ABC的五个命题中,正确的命题有
①③④⑤
.①当△ABC为等边三角形,侧面与底面所成的二面角都相等时,三棱锥P-ABC为正三棱锥;②当△ABC为等边三角形,侧面都为等腰三角形时,三棱锥P-ABC为正三棱锥;③当△ABC为等边三角形,点A在侧面PBC上的射影是三角形PBC的垂心时,P-ABC为正三棱锥;④若三棱锥P-ABC各棱相等时,它的外接球半径和高的比为3:4:⑤当三棱锥P-ABC各棱长相等时,若动点M在侧面PAB内运动,且点M到面ABC的距离与点M到点P的距离相等,则M的轨迹为椭圆的一部分.

查看答案和解析>>

科目:高中数学 来源: 题型:

11、下列命题中正确命题的个数是(  )
①经过空间一点一定可作一平面与两异面直线都平行;
②已知平面α、β,直线a、b,若α∩β=a,b⊥a,则b⊥α;
③有两个侧面垂直于底面的四棱柱为直四棱柱;
④四个侧面两两全等的四棱柱为直四棱柱;
⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;
⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥P-ABC是正三棱锥.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题P:底面是等边三角形,侧面与底面所成的二面角都相等的三棱锥是正三棱锥;命题Q:在△ABC中A>B是cos2
A
2
+
π
4
)<cos2
B
2
+
π
4
)成立的必要非充分条件,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC是一个等边三角形遮阳棚,A、B为南北方向上两个定点,AB=2米,正东方向射出的太阳光与地面成40°角.为了使遮荫面△ABD的面积最大,遮阳棚△ABC与地面所成角的大小应为_______________;最大遮荫面积为______________平方米.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省卫辉市高三2月月考数学理卷 题型:选择题

下列命题中不正确命题的个数是(  )

①经过空间一点一定可作一平面与两异面直线都平行;

②已知平面,直线ab,若,则

③有两个侧面垂直于底面的四棱柱为直四棱柱;

④四个侧面两两全等的四棱柱为直四棱柱;

⑤底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;

⑥底面是等边三角形,∠APB=∠BPC=∠CPA,则三棱锥PABC是正三棱锥.

A.0                               B.1           C.2                             D.3

 

查看答案和解析>>

同步练习册答案