精英家教网 > 高中数学 > 题目详情
16.已知$\frac{cos(180°+α)sin(α+360°)sin(540°+α)}{sin(-α-180°)cos(-180°-α)}$=lg$\frac{1}{\root{3}{10}}$,求$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(α-2π)}$的值.

分析 利用诱导公式,可将已知化简为sinα=$\frac{1}{3}$,再结合同角三角函数关系公式和诱导公式,可得答案.

解答 解:∵$\frac{cos(180°+α)sin(α+360°)sin(540°+α)}{sin(-α-180°)cos(-180°-α)}$=$\frac{cosα•si{n}^{2}α}{-sinα•cosα}$=-sinα=lg$\frac{1}{\root{3}{10}}$=-$\frac{1}{3}$,
∴sinα=$\frac{1}{3}$,
∴$\frac{cos(π+α)}{cosα[cos(π-α)-1]}$+$\frac{cos(α-2π)}{cosαcos(π-α)+cos(α-2π)}$=$\frac{-cosα}{cosα(-cosα-1)}$+$\frac{cosα}{-co{s}^{2}α+cosα}$=$\frac{1}{1+cosα}$+$\frac{1}{1-cosα}$=$\frac{2}{1-co{s}^{2}α}$=$\frac{2}{{sin}^{2}α}$=18

点评 本题考查的知识点是三角函数的化简求值,同角三角函数关系公式和诱导公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知2sinθ-cosθ=1,则$\frac{2cosθ}{sinθ-cosθ+1}$=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简tan$\root{α}{\frac{1}{si{n}^{2}α}-1}$,其中α是第二象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知方程x2-mx+4=0在-1≤x≤1上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{{m}^{2}-4}$=3表示焦点在y轴上的双曲线,则m的取值范围是(  )
A.1<m<2B.m>2C.m<-2D.-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知数列{an}中,a1=1,an+1=n+an,则$\frac{{a}_{n}}{n}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知0(0,0),A(3,0),B(0,4),P是△OAB的内切圆上一动点,则以PO、PA、PB为半径的三个圆面积之和的最大值为(  )
A.10πB.12πC.22πD.25π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数f(x)=$\sqrt{21+4x-{x}^{2}}-\frac{lo{g}_{5}(1-x)}{x+1}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\sqrt{3}sinωx+2{cos^2}\frac{ωx}{2}-1(ω>0)$的最小正周期为π.对于函数f(x),下列说法正确的是(  )
A.在$[\frac{π}{6},\frac{2π}{3}]$上是增函数
B.图象关于直线$x=\frac{5π}{12}$对称
C.图象关于点$(-\frac{π}{3},0)$对称
D.把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,所得函数图象关于y轴对称

查看答案和解析>>

同步练习册答案