精英家教网 > 高中数学 > 题目详情
已知△ABC中,sinA=
3
5
cosB=
5
13
,则cosC的值等于(  )
分析:由cosB的值及B为三角形内角,利用同角三角函数间的基本关系求出sinB的值,由sinB大于sinA,得到A为锐角,由sinA的值求出cosA的值,将cosC变形后利用两角和与差的余弦函数公式化简,将各自的值代入计算即可求出值.
解答:解:在△ABC中,sinA=
3
5
,cosB=
5
13

∴sinB=
1-cos2B
=
12
13
3
5
=sinA,
∴A为锐角,
∴cosA=
1-sin2A
=
4
5

则cosC=-cos(A+B)=-cosAcosB+sinAsinB=-
4
5
×
5
13
+
3
5
×
12
13
=
16
65

故选B
点评:此题考查了两角和与差的余弦函数公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,sinA(sinB+
3
cosB)=
3
sinC,BC=3,则△ABC的周长的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,sinA(sinB+
3
cosB)=
3
sinC

(I)求角A的大小;
(II)若BC=3,求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,sinA:sinB:sinC=k:(k+1):2k (k≠0),则k的取值范围为(  )
A、(2,+∞)
B、(0,2)
C、(
1
2
,2)
D、(
1
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,sinA+cosA=
15

(1)求sinAcosA;
(2)求sinA-cosA;
(3)判断△ABC为锐角三角形还是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,sinA=
1
2
,则A等于(  )

查看答案和解析>>

同步练习册答案