分析 把上面一个式子平方,得到x2=1+sinθ,代入第二个参数方程得到x2=y,根据所给的角的范围,写出两个变量的取值范围,得到普通方程.
解答 解:∵$\left\{\begin{array}{l}{x=|sin\frac{θ}{2}+cos\frac{θ}{2}|}\\{y=1+sinθ}\end{array}\right.$
∵θ∈[0,2π),
∴|cos$\frac{θ}{2}$+sin$\frac{θ}{2}$|=|$\sqrt{2}$sin($\frac{θ}{2}$+$\frac{π}{4}$)|∈[0,$\sqrt{2}$]
1+sinθ=(cos$\frac{θ}{2}$+sin$\frac{θ}{2}$)2∈[0,2]
故答案为:x2=y(0≤x≤$\sqrt{2}$,0≤y≤2)
点评 本题考查参数方程化为普通方程,本题解题的关键是看出怎么应用三角函数的恒等变换得到结果,注意题目中变量的取值范围不要漏掉.
科目:高中数学 来源: 题型:选择题
| A. | 相离 | B. | 相切 | C. | 相交 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$ | B. | $\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$ | C. | $\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$ | D. | $\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{8\sqrt{3}}}{3}$ | B. | $\frac{{16\sqrt{3}}}{3}$ | C. | $\frac{{32\sqrt{3}}}{3}$ | D. | $16\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com