精英家教网 > 高中数学 > 题目详情
抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
2
2

求此直线的方程.
(1)抛物线y2=p(x+1)的准线方程是x=-1-
p
4

直线x+y=m与x轴的交点为(m,0),
题设交点在准线右边,
得m>-1-
p
4
,即4m+p+4>0.
y2=p(x+1)
x+y=m

得x2-(2m+p)x+(m2-p)=0.
而判别式△=(2m+p)2-4(m2-p)=p(4m+p+4).
又p>0及4m+p+4>0,
可知△>0.
因此,直线与抛物线总有两个交点;                  …(4分)
(2)设Q、R两点的坐标分别为(x1,y1)、(x2,y2),
由(1)知,x1、x2是方程x2-(2m+p)x+m2-p=0的两根,
∴x1+x2=2m+p,x1•x2=m2-p.
由OQ⊥OR,得kOQ•kOR=-1,
即有x1x2+y1y2=0.
又Q、R为直线x+y=m上的点,
因而y1=-x1+m,y2=-x2+m.
于是x1x2+y1y2=2x1x2-m(x1+x2)+m2=2(m2-p)-m(2m+p)+m2=0,
∴p=f(m)=
m2
m+2

p>0
4m+4+p>0

得m>-2,m≠0;…(9分)
(3)由于抛物线y2=p(x+1)的焦点F坐标为(-1+
p
4
,0),
于是有
|-1+
p
4
+0-m|
2
=
2
2

即|p-4m-4|=4.
又p=
m2
m+2

∴|
3m2+12m+8
m+2
|=4.
解得m1=0,m2=-
8
3
,m3=-4,m4=-
4
3

但m≠0且m>-2,因而舍去m1、m2、m3
故所求直线方程为3x+3y+4=0.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于
2
2
,求p的值的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
2
2

求此直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于数学公式,求p的值的范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年福建省莆田四中高二(上)模块数学试卷(理科)(解析版) 题型:解答题

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于,求p的值的范围.

查看答案和解析>>

科目:高中数学 来源:2007-2008学年福建省莆田四中高二(上)模块数学试卷(文科)(解析版) 题型:解答题

抛物线方程为y2=p(x+1)(p>0),直线x+y=m与x轴的交点在抛物线的准线的右边.
(1)求证:直线与抛物线总有两个交点;
(2)设直线与抛物线的交点为Q、R,OQ⊥OR,
求p关于m的函数f(m)的表达式;
(3)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为
求此直线的方程.

查看答案和解析>>

同步练习册答案