精英家教网 > 高中数学 > 题目详情
1.已知随机变量X的分布列为:.
X 1 2 3 4
 P 0.1 0.2 0.4 0.20.1
若Y=2X-3,则P(1<Y≤5)=0.6.

分析 由随机变量X的分布列,Y=2X-3,得:P(1<Y≤5)=P(2<X≤4)=P(X=3)+P(X=4),由此能求出结果.

解答 解:由随机变量X的分布列,Y=2X-3,得:
P(1<Y≤5)=P(2<X≤4)
=P(X=3)+P(X=4)
=0.4+0.2
=0.6.
故答案为:0.6.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意离散型随机变量分布列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在x轴上的截距是-2,在y轴上的截距是2的直线方程是x-y+2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知抛物线y2=2px(p>0)的焦点为F,点P是抛物线上的一点,且其纵坐标为4,|PF|=4.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2),(yi≤0,i=1,2)是抛物线上的两点,∠APB的角平分线与x轴垂直,求直线AB的斜率;
(3)在(2)的条件下,若直线AB过点(1,-1),求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等边△ABC的边长为8$\sqrt{3}$,且三个顶点都在抛物线y2=4mx(m>0)上,抛物线的准线与x轴交于点M,自M引直线交抛物线于P、Q两个不同的点,设$\overrightarrow{MP}$=λ$\overrightarrow{MQ}$
(1)求抛物线的方程;
(2)若λ∈[$\frac{1}{2}$,1),求|PQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$\frac{lo{g}_{2}x-1}{2lo{g}_{2}x+1}$(x>2),已知f(x1)+f(x2)=$\frac{1}{2}$,则f(x1x2)的最小值=$\frac{4}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\sqrt{{x}^{2}+1}$+$\sqrt{{x}^{2}-4x+13}$的最小值为(  )
A.2$\sqrt{5}$B.$\sqrt{2}$+$\sqrt{10}$C.$\sqrt{7}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=-3${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx,则二项式(x2+x+y)a展开式中x5y2项的系数为(  )
A.120B.80C.60D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设x>1,y>0,xy+x-y=2$\sqrt{2}$,则xy-x-y等于2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.判断下列每组时间中是否是互斥事件,如果是,再判断它们是否是对立事件
已知被抽检的一批产品中有10件正品,3件次品,现随机抽取3件
(1)“恰好有一件次品”与“恰好有2件次品”;
(2)“至少有一件次品”和“全是次品”;
(3)“至少有一件正品”和“正好有一件次品”

查看答案和解析>>

同步练习册答案