精英家教网 > 高中数学 > 题目详情

已知集合P={ x|x=2n,n∈N},Q={ x|x=2n,n∈N},将集合P∪Q中的所有元素从小到大依次排列,构成一个数列{an},则数列{an}的前20项之和S20=________.

343
分析:先列举出出数列{an}中的前20项,分两个数列,一个等差数列的前15项的和与一个等比数列的前5项的和.利用公式求出和.
解答:因为P={ x|x=2n,n∈N},Q={ x|x=2n,n∈N},
P∪Q中的所有元素从小到大依次排列,构成一个数列{an},
所以数列{an}的前20项分别为0,1,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36
所以数列{an}的前20项之和(0+2+4+6+8+…+36)+(1+2+4+8+16+32)-(2+4+8+16+32)=343
故答案为343.
点评:求数列的前n项的和先判断出数列的通项的特点,根据通项的特点选择合适的求和方法,求出数列的前n项的和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

112、已知集合P={(x,y)|y=m},Q={(x,y)|y=ax+1,a>0,a≠1},如果P∩Q有且只有一个元素,那么实数m的取值范围是
(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

4、已知集合P={(x,y)|x+y=3},集合Q={(x,y)|x-y=5},那么P∩Q=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={(x,y)|y=
9-x2
}、Q={(x,y)|y=x+b},若P∩Q≠∅,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={(x,y)|x2+y2=9}、Q={(x,y)|y=x+b},若P∩Q≠∅,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

命题:
(1)若f(x)=ax2+bx+3a+b是偶函数,其定义域是[a-1,2a],则f(x)在区间(-
2
3
,-
1
3
)
是减函数.
(2)如果一个数列{an}的前n项和Sn=abn+c,(a≠0,b≠1,c≠1)则此数列是等比数列的充要条件是a+c=0.
(3)曲线y=x3+x+1过点(1,3)处的切线方程为:4x-y-1=0.
(4)已知集合P∈{(x,y)|y=k},Q∈{(x,y)|y=ax+1,a>0且a≠1},若P∩Q只有一个子集.则k<1.
以上四个命题中,正确命题的序号是
(1)(2)
(1)(2)

查看答案和解析>>

同步练习册答案