精英家教网 > 高中数学 > 题目详情
(2012•惠州模拟)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.
(1)求动点P的轨迹C的方程.
(2)过点F作两条斜率存在且互相垂直的直线l1、l2,设l1与轨迹C交于A、B两点,l2与轨迹C交于D、E两点,求|FA|•|FB|+|FC|•|FD|的最小值.
分析:(1)根据平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1,可得当x≥0时,点P到F的距离等于点P到直线x=-1的距离,所以动点P的轨迹为抛物线;当x<0时,y=0也满足题意;
(2)设l1的方程为y=k(x-1)与抛物线方程联立,设A(x1,y1),B(x2,y2),利用韦达定理可得x1+x2=2+
4
k2
,x1x2=1,x3+x4=2+4k2,x3x4=1,从而可得|FA||FB|+|FD||FE|=8+4(k2+
1
k2
)≥16,由此即可得到结论.
解答:解:(1)∵平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1
∴当x≥0时,点P到F的距离等于点P到直线x=-1的距离,
∴动点P的轨迹为抛物线,方程为y2=4x(x≥0)
当x<0时,y=0
∴动点P的轨迹C的方程为y2=4x(x≥0)或y=0(x<0)
(2)由题意知,直线l1的斜率存在且不为0,设为k,则l1的方程为y=k(x-1)
与抛物线方程联立,消元可得k2x2-(2k2+4)x+k2=0
设A(x1,y1),B(x2,y2),则x1,x2是上述方程的两个实根,所以x1+x2=2+
4
k2
,x1x2=1
∵l1⊥l2,∴l2的斜率为-
1
k

设D(x3,y3),E(x4,y4),则同理可得x3+x4=2+4k2,x3x4=1
∴|FA||FB|+|FD||FE|=(x1+1)(x2+1)+(x3+1)(x4+1)=8+4(k2+
1
k2
)≥16(当且仅当k=±1时取等号)
∴|FA|•|FB|+|FC|•|FD|的最小值为16.
点评:本题考查轨迹方程,考查直线与抛物线的位置关系,解题的关键是确定抛物线的方程,利用韦达定理解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知实数4,m,9构成一个等比数列,则圆锥曲线
x2
m
+y2=1
的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)已知椭圆C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的离心率为
6
3
,且经过点(
3
2
1
2
)

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点P(0,2)的直线交椭圆C于A,B两点,求△AOB(O为原点)面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求证:平面BCE⊥平面CDE;
(3)求平面BCE与平面ACD所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)如图,在底面是矩形的四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中点.
(1)求证:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•惠州模拟)计算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步练习册答案