精英家教网 > 高中数学 > 题目详情

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,

(1)证明:平面ACD⊥平面ADE;

(2)记AC=x求三棱锥A=CBE的体积V(x);

(3)当V(x)取得最大值时,求证:AD=CE.

答案:
解析:

  (1)内接于圆是圆的直径

  

  平面

  

  平面

  四边形为平行四边形

  

  平面

  平面平面

  (2)

  

  (

  (

  (3)(

  

  当且仅当时等号成立

  此时

  


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DBCE为平行四边形,EC⊥平面ABC,AB=2AC=2,tan∠DAB=
3
2

(1)设F是CD的中点,证明:OF∥平面ADE;
(2)求点B到平面ADE的距离;
(3)画出四棱锥A-BCED的正视图(圆O在水平面,ABD在正面,要求标明垂直关系与至少一边的长).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆⊙O,点D在OC的延长线上,AD是⊙O的切线,若∠B=30°,AC=
3
,则△CAD的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,AB=2,tan∠EAB=
3
2

(1)证明:平面ACD⊥平面ADE;
(2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式;
(3)当V(x)取得最大值时,求证:AD=CE.

查看答案和解析>>

同步练习册答案