精英家教网 > 高中数学 > 题目详情
已知f(x)=(x-m)(x-n)-2,且α、β是方程f(x)=0的两根,则下列不等式可能成立的是( )
A.β<m<n<α
B.m<α<n<β
C.α<m<β<n
D.n<α<β<m
【答案】分析:先设g(x)=(x-m)(x-n),从条件中得到f(x)的图象可看成是由g(x)的图象向下平移2个单位得到,然后结合图象判定实数α,β、m、n的大小关系即可.
解答:解:设g(x)=(x-m)(x-n),
则f(x)=(x-m)(x-n)-2,
分别画出这两个函数的图象,其中f(x)的图象可看成是由g(x)的图象向下平移2个单位得到,
如图,若β<α
由图可知:β<m<n<α.
故选A
点评:本题考查了一元二次方程的根与系数之间的关系,难度较大,关键是对m,n,α,β大小关系的讨论,为了避免这种讨论采用数形结合的方法来解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),则下列命题中正确的是(  )
A、函数y=f(x)•g(x)的最小正周期为2π
B、函数y=f(x)•g(x)是偶函数
C、函数y=f(x)+g(x)的最小值为-1
D、函数y=f(x)+g(x)的一个单调增区间是[-
4
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案