精英家教网 > 高中数学 > 题目详情

f(x)=数学公式,则f(2)的值是


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4
D
分析:利用分段函数,直接求f(2)即可.
解答:由分段函数可知,当x>1时,f(x)=2x
所以f(2)=22=4.
故选D.
点评:本题主要考查分段函数的应用,利用分段函数求值注意自变量的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|lgx|,则f(
1
4
)
、f(
1
3
)、f(2)的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若{y|y=f(x),x∈A}=A,则f(x)称为A上的一阶回归函数;
若{y|y=f(f(x)),x∈A}=A,则f(x)称为A上的二阶回归函数;
若{y|y=f(f(f(x))),x∈A}=A,则f(x)称为A上的三阶回归函数.
下列判断正确的个数是(  )
①f(x)=3-x是[1,2]上的一阶回归函数;
f(x)=1-(
1
2
)x
是[-1,0]上的一阶回归函数
f(x)=
-2
x
是(0,+∞)上的二阶回归函数;
f(x)=
1
1-x
是(2,+∞)上的三阶回归函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=|lgx|,则f(
1
4
)
、f(
1
3
)、f(2)的大小关系是(  )
A.f(2)>f(
1
3
)>f(
1
4
)
B.f(
1
4
)
>f(
1
3
)>f(2)
C.f(2)>f(
1
4
)
>f(
1
3
D.f(
1
3
)>f(
1
4
)
>f(2)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市重点中学高三(上)10月月考数学试卷(理科)(解析版) 题型:选择题

定义:若{y|y=f(x),x∈A}=A,则f(x)称为A上的一阶回归函数;
若{y|y=f(f(x)),x∈A}=A,则f(x)称为A上的二阶回归函数;
若{y|y=f(f(f(x))),x∈A}=A,则f(x)称为A上的三阶回归函数.
下列判断正确的个数是( )
①f(x)=3-x是[1,2]上的一阶回归函数;
是[-1,0]上的一阶回归函数
是(0,+∞)上的二阶回归函数;
是(2,+∞)上的三阶回归函数.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案