精英家教网 > 高中数学 > 题目详情
设函数
(1)判断函数的奇偶性,并给予证明;
(2)证明:函数在其定义域上是单调增函数。
(1)解:是奇函数;
,得x∈R,即所给函数的定义域为R,显然它关于原点对称,
又∵
∴函数是奇函数。
(2)证明:设x1,x2∈R,且x1<x2






∵x1-x2<0,
∴t1-t2<0,∴0<t1<t2

∴f (x1)-f (x2)<lg1=0,即f (x1)<f (x2),
∴ 函数f(x)在R上是单调增函数。
练习册系列答案
相关习题

科目:高中数学 来源:设计必修一数学(人教A版) 人教A版 题型:022

根据定义讨论(或证明)函数增减性的一般步骤是:

(1)设x1、x2是给定区间内的任意两个值且x1<x2

(2)作差f(x1)-f(x2),并将此差化简、变形;

(3)判断f(x1)-f(x2)的正负,从而证得函数的增减性.

利用函数的单调性可以把函数值的大小比较的问题转化为自变量的大小比较的问题.

函数的单调性只能在函数的定义域内来讨论.这即是说,函数的单调区间是其定义域的________.

查看答案和解析>>

同步练习册答案