精英家教网 > 高中数学 > 题目详情
(2012•东城区一模)在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P为CD的中点,则
PA
PB
的值为(  )
分析:由题意可得cos∠PDA=
5
5
,由
PA
PB
=(
PD
+2
CB
)•(-
PD
+
CB
),再利用两个向量的数量积的定义,运算求得结果.
解答:解:由题意可得
DA
=2
CB
PD
=-
PC
,|
PD
|=|
PC
|=
1
2
16+4
=
5

∴tan∠PDA=2,cos∠PDA=
5
5

PA
PB
=(
PD
+
DA
)•(
PC
+
CB
)=(
PD
+2
CB
)•(-
PD
+
CB

=-
PD
2
-
PD
CB
+2
CB
2
=-5-2×
5
×cos(π-∠PDA)+2×4
=-5-2×
5
×(-
5
5
)+8=5,
故选D.
点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•东城区一模)已知sin(45°-α)=
2
10
,且0°<α<90°,则cosα=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知x,y,z∈R,若-1,x,y,z,-3成等比数列,则xyz的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为.(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)在如图所示的茎叶图中,乙组数据的中位数是
84
84
;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是
组.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•东城区一模)如图1,在边长为3的正三角形ABC中,E,F,P分别为AB,AC,BC上的点,且满足AE=FC=CP=1.将△AEF沿EF折起到△A1EF的位置,使平面A1EF⊥平面EFB,连接A1B,A1P.(如图2)
(Ⅰ)若Q为A1B中点,求证:PQ∥平面A1EF;
(Ⅱ)求证:A1E⊥EP.

查看答案和解析>>

同步练习册答案