精英家教网 > 高中数学 > 题目详情
△ABC中,”A为锐角”是”sinA>0”的
 
 条件(用充分必要性填空)
分析:根据角是锐角可以判断角的正弦值大于0,得到前者可以推出后者,举出一个反例来说明后者不一定推出前者,得到前者是后者的充分不必要条件.
解答:解:若∠A为锐角,根据三角函数的定义知sinA>0  
即前者可以推出后者,
当sinA>0,比如sin150°=
1
2
>0,显然A=150°,不是锐角.
得到前者不能推出后者,
∴综上可知前者是后者的充分不必要条件,
故答案为:充分不必要
点评:本题考查充分条件、必要条件与充要条件的定义,正弦函数的符号,本题解题的关键是通过举反例来说明某个命题不正确,这是一种简单有效的方法,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1所示,在边长为12的正方形ADD1A1中,点B,C在线段AD上,且AB=3,BC=4,作BB1∥AA1,分别交A1D1,AD1于点B1,P,作CC1∥AA1,分别交A1D1,AD1于点C1,Q,将该正方形沿BB1,CC1折叠,使得DD1与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)求证:AB⊥平面BCC1B1
(Ⅱ)求四棱锥A-BCQP的体积;
(Ⅲ)求平面PQA与平面BCA所成锐二面角的余弦值.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

PA、PB、PC两两垂直;②P到△ABC三边的距离相等;③PA⊥BC,PB⊥AC;④PA、PB、PC与平面ABC所成的角相等;⑤平面PBC、PAB、PAC与平面ABC所成的锐二面角相等;⑥PA=PB=PC;⑦∠PAB=∠PAC,∠PBA=∠PBC,∠PCB=∠PCA;⑧AC⊥面PBO,AB⊥面PCO.若在上述8个序号中任意取出两个作为条件,其中一个一定能得出O为△ABC的垂心、另一个一定能得出O为△ABC的外心的概率为(  )

查看答案和解析>>

科目:高中数学 来源:2010-2011年浙江省高二下学期期中考试数学2-4 题型:解答题

如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC.

(1)求证AC⊥平面DEF;

(2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由.

(3)求平面ABD与平面DEF所成锐二面角的余弦值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省厦门市高二(下)期末数学试卷(理科)(解析版) 题型:解答题

如图,在Rt△ABC中,∠ABC=90°,BA=BC=2,AE⊥平面ABC,CD⊥平面ABC,CE交AD于点P.
(1)若AE=CD,点M为BC的中点,求证:直线MP∥平面EAB
(2)若AE=2,CD=1,求锐二面角E-BC-A的平面角的余弦值.

查看答案和解析>>

同步练习册答案