分析 (1)利用等比数列的通项公式即可得出;
(2)由(1)可得:a7+7=26+7=71,a2k=22k-1,Sk=$\frac{{2}^{k}-1}{2-1}$=2k-1.a7+7,a2k,-Sk成等差数列,可得2a2k=a7+7-Sk,代入解出即可得出.
解答 解:(1)设等比数列{an}的公比为q,∵a1+a3=5,a2+a4=10.
∴5q=10,解得q=2,代入a1+a3=5,可得${a}_{1}(1+{2}^{2})$=5,解得a1=1.
∴an=2n-1.
(2)由(1)可得:a7+7=26+7=71,a2k=22k-1,Sk=$\frac{{2}^{k}-1}{2-1}$=2k-1.
∵a7+7,a2k,-Sk成等差数列,
∴2a2k=a7+7-Sk,
∴2×22k-1=71-(2k-1).
化为:(2k)2+2k-72=0,2k>0,
解得2k=8,∴k=3.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | an=4n-3 | B. | an=3n-2 | C. | an=2n-1 | D. | an=n |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2) | B. | ($\sqrt{2}$,2) | C. | ($\sqrt{2}$,$\sqrt{3}$) | D. | ($\sqrt{3}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com