精英家教网 > 高中数学 > 题目详情
3.如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设$\overrightarrow{AP}=x\overrightarrow{AD}$,$\overrightarrow{PB}•\overrightarrow{PC}=y$,则得到函数y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)对于任意a∈(0,+∞),求函数f(x)的最大值.

分析 (Ⅰ)画出图形,建立直角坐标系,即得y=f(x)的解析式,代值计算即可
(Ⅱ)通过分类讨论,利用二次函数的单调性即可判断出.

解答 解:(1)如图所示,建立直角坐标系.
∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),
∴B(0,0),A(-2,0),D(-1,a),C(0,a).
∵$\overrightarrow{AP}$=x$\overrightarrow{AD}$,(0≤x≤1).
∴$\overrightarrow{BP}$=$\overrightarrow{BA}$+x$\overrightarrow{AD}$=(-2,0)+x(1,a)=(x-2,xa),
∴$\overrightarrow{PC}$=$\overrightarrow{BC}$-$\overrightarrow{BP}$=(0,a)-(x-2,xa)=(2-x,a-xa)
∴y=f(x)=$\overrightarrow{PB}$•$\overrightarrow{PC}$=(2-x,-xa)•(2-x,a-xa)
=(2-x)2-ax(a-xa)
=(a2+1)x2-(4+a2)x+4.
∴f(1)=a2+1-(4+a2)+4=1
(Ⅱ)由y=f(x)=(a2+1)x2-(4+a2)x+4.
可知:对称轴x0=$\frac{4+{a}^{2}}{2({a}^{2}+1)}$.
当0<a≤$\sqrt{2}$时,1<x0,∴函数f(x)在[0,1]单调递减,因此当x=0时,函数f(x)取得最大值4.
当a>$\sqrt{2}$时,0<x0<1,函数f(x)在[0,x0)单调递减,在(x0,1]上单调递增.
又f(0)=4,f(1)=1,
∴f(x)max=f(0)=4.
综上所述函数f(x)的最大值为4

点评 本题考查了数量积运算、分类讨论、二次函数的单调性等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积最大时,其高的值为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.2$\sqrt{6}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0),过点K(-4,0)作抛物线的两条切线KA,KB,A,B为切点,若AB过抛物线的焦点,△KAB的面积为24,则p的值是(  )
A.12B.-12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sinx-cosx的图象(  )
A.关于直线$x=\frac{π}{4}$对称B.关于直线$x=-\frac{π}{4}$对称
C.关于直线$x=\frac{π}{2}$对称D.关于直线$x=-\frac{π}{2}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若$\overrightarrow{a}$,$\overrightarrow{b}$均为单位向量,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,则$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{b}$的夹角等于150°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是[10,20].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设实数x1、x2是函数$f(x)=|{lnx}|-{({\frac{1}{2}})^x}$的两个零点,则(  )
A.x1x2<0B.0<x1x2<1C.x1x2=1D.x1x2>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若f(x)=xsinx,则函数f(x)的导函数f′(x)等于(  )
A.1-sinxB.x-sinxC.sinx+xcosxD.cosx-xsinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=-lg(x+1)的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案