精英家教网 > 高中数学 > 题目详情
若抛物线y2=2px的焦点与椭圆
x2
6
+
y2
2
=1
的右焦点重合,则p的值为(  )
A、-2B、2C、-4D、4
考点:抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:先根据椭圆方程求出其右焦点的坐标,在于抛物线的性质可确定p的值.
解答: 解:椭圆
x2
6
+
y2
2
=1
中,
c2=6-2=4,即c=2,
故椭圆
x2
6
+
y2
2
=1
的右焦点为(2,0),
所以抛物线y2=2px的焦点为(2,0),
则p=4,
故选D.
点评:本题主要考查椭圆的简单性质和抛物线的标准方程,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在一次物理竞赛中,学生成绩均在内[50,100),相应的频率分布直方图如图,已知成绩在[60,70)的学生有40人,则成绩在[70,90)的人数为(  )
A、20B、22C、25D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn=n2+2n.数列{bn}中,b1=1,bn=abn-1(n≥2).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)求证:①bn+1>2bn;②
1
b1
+
1
b2
+
1
b3
+…+
1
bn
<2-
1
bn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是正常数,且a,b,c互不相等,x,y,z∈(0,+∞),求证:
a2
x2
+
b2
y2
+
c2
z2
(a+b+c)2
x+y+z
,并指出等号成立的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线9x2-4y2=36的左、右焦点分别为F1,F2,点P在双曲线上,且|PF1|•|PF2|=16,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

把曲线ysinx-2y+3=0先沿x轴向左平移
π
2
个单位长度,再沿y轴向下平移1个单位长度,得到曲线方程是(  )
A、(1-y)cosx+2y-3=0
B、(1+y)sinx-2y+1=0
C、(1+y)cosx-2y+1=0
D、-(1+y)cosx+2y+1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

设a∈Z,且0≤a<13,若512013+a能被13整除,则a=(  )
A、1B、2C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log 
1
3
(-x2+3x)的单调递减区间是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为(0,+∞)的函数f(x)满足:
①对?x∈(0,+∞),恒有f(2x)=2f(x);
②当x∈(1,2]时,f(x)=2-x.
(1)求f(16)的值;
(2)证明:对?m∈Z,有f(2m)=0;
(3)是否存在整数n,是的f(2n+1)=9?若存在,求出相应的n的值.

查看答案和解析>>

同步练习册答案