精英家教网 > 高中数学 > 题目详情
直线y=x+2经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点和一个顶点,则椭圆的离心率为
 
分析:由题意可知直线y=x+2与x轴的交点正好是椭圆的左焦点,直线与y轴的交点正是椭圆的上顶点.进而根据直线与x轴和y轴的交点即可求得b和c,根据a=
b2+c2
,最后可得离心率e.
解答:解:∵直线y=x+2与y轴的交点为(0,2),与x轴的交点为(-2,0),故可知椭圆的短轴顶点为(0,2),焦点坐标为(-2,0),即b=2,c=2
∴a=
b2+c2
=2
2

∴e=
c
a
=
2
2

故答案为:
2
2
点评:本题主要考查了椭圆的简单性质及直线与椭圆的关系.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:2013年湖南省怀化市高考数学三模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源:2013年黑龙江省哈尔滨三中高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆过点,离心率,若点M(x,y)在椭圆C上,则点称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

同步练习册答案