精英家教网 > 高中数学 > 题目详情
已知m,n是正数,证明:
m3
n
+
n3
m
≥m2+n2
分析:不等式两边同乘mn,然后利用作差法进行化简,最后因式分解判定符号,即可证得结论.
解答:证明:两边同乘mn,得
m4+n4≥m3n+n3m,m,n>0
作差得,m4+n4-m3n-n3m=m3(m-n)+n3(n-m)=(m3-n3)(m-n)=(m-n)2(m2+mn+n2)≥0,
m3
n
+
n3
m
≥m2+n2
点评:本题主要考查了不等式的证明,同时考查了因式分解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
AT2
AN2
=
PT•PS
NT•NS

B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线ρ=12cos(θ-
π
6
)
上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:
m3
n
+
n3
m
≥m2+n2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省南通市海安中学高二(下)6月月考数学试卷(解析版) 题型:解答题

已知m,n是正数,证明:≥m2+n2

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏、锡、常、镇四市高三调研数学试卷(一)(解析版) 题型:解答题

选做题A.平面几何选讲
过圆O外一点A作圆O的两条切线AT、AS,切点分别为T、S,过点A作圆O的割线APN,
证明:
B.矩阵与变换(10分)
已知直角坐标平面xOy上的一个变换是先绕原点逆时针旋转45°,再作关于x轴反射变换,求这个变换的逆变换的矩阵.
C.坐标系与参数方程
已知A是曲线ρ=12sinθ上的动点,B是曲线上的动点,试求线段AB长的最大值.D.不等式选讲
已知m,n是正数,证明:≥m2+n2

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏州中学高考数学一模试卷(解析版) 题型:解答题

已知m,n是正数,证明:≥m2+n2

查看答案和解析>>

同步练习册答案