| A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{4}$或$\frac{π}{4}$ |
分析 设BD=2x,则DC=3x,AD=6x,利用直角三角形中的边角关系求得tan∠BAD和tan∠CAD的值,再利用两角和的正切公式求得tan∠BAC的值,可得∠BAC的值.
解答
解:在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,
设BD=2x,则DC=3x,AD=6x,故tan∠BAD=$\frac{BD}{AD}$=$\frac{2x}{6x}$=$\frac{\frac{1}{3}}{\;}$,tan∠CAD=$\frac{CD}{AD}=\frac{2x}{6x}=\frac{1}{2}$,
故tan∠BAC=tan(∠BAD+∠CAD)=$\frac{tan∠BAD+tan∠CAD}{1-tan∠BAD•tan∠CAD}$=$\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}×\frac{1}{2}}=1$,
再结合∠BAC∈(0,π),求得∠BAC=$\frac{π}{4}$,
故选:C.
点评 本题主要考查直角三角形中的边角关系,两角和的正切公式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com