精英家教网 > 高中数学 > 题目详情
17.在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,则∠BAC的大小为(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$或$\frac{π}{4}$

分析 设BD=2x,则DC=3x,AD=6x,利用直角三角形中的边角关系求得tan∠BAD和tan∠CAD的值,再利用两角和的正切公式求得tan∠BAC的值,可得∠BAC的值.

解答 解:在△ABC中,AD⊥BC,垂足为D,AD在△ABC的内部,且BD:DC:AD=2:3:6,
设BD=2x,则DC=3x,AD=6x,故tan∠BAD=$\frac{BD}{AD}$=$\frac{2x}{6x}$=$\frac{\frac{1}{3}}{\;}$,tan∠CAD=$\frac{CD}{AD}=\frac{2x}{6x}=\frac{1}{2}$,
故tan∠BAC=tan(∠BAD+∠CAD)=$\frac{tan∠BAD+tan∠CAD}{1-tan∠BAD•tan∠CAD}$=$\frac{\frac{1}{3}+\frac{1}{2}}{1-\frac{1}{3}×\frac{1}{2}}=1$,
再结合∠BAC∈(0,π),求得∠BAC=$\frac{π}{4}$,
故选:C.

点评 本题主要考查直角三角形中的边角关系,两角和的正切公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性:
(1)f(x)=-2cos3x.
(2)f(x)=xsin(x+π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.正四棱柱ABCD-A1B1C1D1中,AB=a,AA1=2a,M,N分别为BB1,DD1的中点.
(1)求B1N与平面A1B1C1D1所成角的大小.
(2)求异面直线A1M与B1C所成角的大小.
(3)若正四棱柱ABCD-A1B1C1D1的体积为V,求三棱锥M-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=4,
C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.圆C:ρ=-4sinθ上的动点P到直线l:ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$的最短距离为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求下列各曲线的标准方程
(1)椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A(0,-1),且离心率为$\frac{\sqrt{2}}{2}$,求椭圆的标准方程;
(2)已知双曲线过点(4,$\sqrt{3}$),且渐近线方程为y=±$\frac{1}{2}$x,则该双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.f(x)=x2-(a+1)x+a,g(x)=-(a+4)x-4+a,(a∈R).
(1)比较f(x)与g(x)的大小;
(2)解关于x的不等式:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=ax3+bx2+cx+d是实数集R上的偶函数,并且f(x)<0的解为(-2,2),则$\frac{d}{b}$的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=1,b=2,则边长c的取值范围(1,3).

查看答案和解析>>

同步练习册答案