精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)求函数 的最小正周期;

(2)若 ,且 ,求 的值.

【答案】(1) (2)

【解析】试题分析:(1)根据二倍角公式和两角和差公式得到,进而得到周期;(2)由,得到 由配凑角公式得到,代入值得到函数值.

解析:

(1)由题意

=

所以 的最小正周期为

(2)由

又由 ,所以

型】解答
束】
20

【题目】为响应十九大报告提出的实施乡村振兴战略,某村庄投资 万元建起了一座绿色农产品加工厂.经营中,第一年支出 万元,以后每年的支出比上一年增加了 万元,从第一年起每年农场品销售收入为 万元(前 年的纯利润综合=前 年的 总收入-前 年的总支出-投资额 万元).

(1)该厂从第几年开始盈利?

(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.

【答案】(1) 从第 开始盈利(2) 该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元

【解析】试题分析(1)根据公式得到,令函数值大于0解得参数范围;(2根据公式得到,由均值不等式得到函数最值.

解析:

由题意可知前 年的纯利润总和

(1)由 ,即 ,解得

知,从第 开始盈利.

(2)年平均纯利润

因为 ,即

所以

当且仅当 ,即 时等号成立.

年平均纯利润最大值为 万元,

故该厂第 年年平均纯利润达到最大,年平均纯利润最大值为 万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四棱锥A-BCDE,底面BCDE为直角梯形,CD⊥平面ABC,侧面ABCD是等腰直角三角形,EBC=ABC=90°,BC=CD=2BE,M是棱AD的中点

(1)求异面直线MEAB所成角的大小;

()证明:平面AED⊥平面ACD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,若曲线C的极坐标方程为ρ=6cosθ+2sinθ,直线l的参数方程为 (t为参数).
(1)求曲线C的直角坐标方程与直线l的普通方程;
(2)设点Q(1,2),直线l与曲线C交于A,B两点,求|QA||QB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式a﹣ax>ex(2x﹣1)(a>﹣1)有且仅有两个整数解,则实数a的取值范围为(
A.(﹣ ]
B.(﹣1, ]
C.(﹣ ,﹣ ]
D.(﹣ ,﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区业余足球运动员共有15000人,其中男运动员9000人,女运动员6000人,为调查该地区业余足球运动员每周平均踢足球占用时间的情况,采用分层抽样的方法,收集300位业务足球运动员每周平均踢足球占用时间的样本数据(单位:小时)
得到业余足球运动员每周平均踢足球所占用时间的频率分布直方图(如图所示),其中样本数据分组区间为:(0,2],(2,4],(4,6],(6,8],(8,10],(10,12].
将“业务运动员的每周平均踢足球时间所占用时间超过4小时”
定义为“热爱足球”.
附:K2=

P(K2≥k0

0.10

0.05

0.010

0.005

k0

2.706

3.841

6.635

7.879


(1)应收集多少位女运动员样本数据?
(2)估计该地区每周平均踢足球所占用时间超过4个小时的概率.
(3)在样本数据中,有80位女运动员“热爱足球”.请画出“热爱足球与性别”列联表,并判断是否有99%的把握认为“热爱足球与性别有关”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且.

(1)确定的解析式;

2)判断并证明上的单调性;

3)解不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知表示两个不同的平面 表示两条不同直线对于下列两个命题

①若”是“”的充分不必要条件;

②若”是“”的充要条件.判读正确的是(

A. ①②都是真命题 B. ①是真命题,②是假命题

C. ①是假命题,②是真命题 D. ①②都是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)求函数的对称轴方程;

(3)当时,方程有两个不同的实根,求m的取值范围。

查看答案和解析>>

同步练习册答案