精英家教网 > 高中数学 > 题目详情
(2008•黄冈模拟)设函数f(x)=ax3-2bx2+cx+4d (a、b、c、d∈R)图象关于原点对称,且x=1时,f(x)取极小值-
2
3

(1)求a、b、c、d的值;
(2)当x∈[-1,1]时,图象上是否存在两点,使得过此两点处的切线互相垂直?证明你的结论;
(3)若x1,x2∈[-1,1]时,求证:|f(x1)-f(x2)|≤
4
3
分析:(1)根据奇偶性判断b、d的值,再有在1处的极值求出a、c.
(2)用假设法证明.对于存在性问题,可先假设存在,即假设存在x1,x2,则f'(x1)•f'(x2)=-1,若出现矛盾,则说明假设不成立,即不存在;否则存在.
(3)函数在1和-1处取代极值,判断其为最值,根据两最值之差最大,证明问题.
解答:解:(1)∵函数f(x)图象关于原点对称,∴对任意实数x,都有f(-x)=-f(x).
∴-ax3-2bx2-cx+4d=-ax3+2bx2-cx-4d,即bx2-2d=0恒成立.
∴b=0,d=0,即f(x)=ax3+cx.∴f′(x)=3ax2+c.
∵x=1时,f(x)取极小值-
2
3
.∴f′(1)=0且f(1)=-
2
3

即3a+c=0且a+c=-
2
3
.解得a=
1
3
,c=-1.
(2)当x∈[-1,1]时,图象上不存在两点,使得过此两点处的切线互相垂直
证明:假设存在x1,x2,则f'(x1)•f'(x2)=-1
所以(x12-1)(x22-1)=-1
因为x1,x2∈[-1,1]所以x12-1,x22-1∈[-1,0]
因此(x12-1)(x22-1)≠-1
所以不存在.
(3)证明:∵f′(x)=x2-1,由f′(x)=0,得x=±1.
当x∈(-∞,-1)或(1,+∞)时,f′(x)>0;当x∈(-1,1)时,f′(x)<0.
∴f(x)在[-1,1]上是减函数,且fmax(x)=f(-1)=
2
3
,fmin(x)=f(1)=-
2
3

∴在[-1,1]上,|f(x)|≤
2
3

于是x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤|f(x)max-f(x)min|=
2
3
+
2
3
=
4
3

故x1,x2∈[-1,1]时,|f(x1)-f(x2)|≤
4
3
点评:本题主要考查了函数在某点取得极值的条件,以及利用导数求闭区间上函数的最值,同时考查了分析问题的能力和转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•黄冈模拟)在四棱锥P-ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(1)求证:平面PAC⊥平面PBD;
(2)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知等式(1+x-x23•(1-2x24=a0+a1x+a2x2+…+a14x14成立,则a1+a2+a3+…+a13+a14的值等于
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)不等式|x|•(1-3x)>0的解集是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)已知直线x+y-1=0与椭圆
x2
a2
+
y2
b2
=1
(a>b>0)相交于A、B两点,M是线段AB上的一点,
AM
=-
BM
,且点M在直线l:y=
1
2
x
上,
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线l的对称点在单位圆x2+y2=1上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•黄冈模拟)若全集U=R,集合A={x|1-x<0},B={x|x2-2x≤0},则A∩B=(  )

查看答案和解析>>

同步练习册答案