精英家教网 > 高中数学 > 题目详情

已知直线l的极坐标方程是数学公式,若直线l与双曲线数学公式的一条渐近线平行,则实数a=________.


分析:先将直线l的极坐标方程化成直角坐标方程,再求出双曲线的一条渐近线,最后利用平行线的斜率相等即可求得实数a值.
解答:直线l的极坐标方程是
得其直角坐标方程为:x+y-2=0,
又双曲线的一条渐近线是:
y=-
,a=
故答案为:
点评:本题考查点的极坐标和直角坐标的互化、简单曲线的极坐标方程、双曲线的简单性质、两条直线平行的判定,极坐标和直角坐标的互化主要是利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-4:矩阵与变换
已知曲线C1:y=
1
x
绕原点逆时针旋转45°后可得到曲线C2:y2-x2=2,
(I)求由曲线C1变换到曲线C2对应的矩阵M1;    
(II)若矩阵M2=
20
03
,求曲线C1依次经过矩阵M1,M2对应的变换T1,T2变换后得到的曲线方程.
(2)选修4-4:坐标系与参数方程
已知直线l的极坐标方程是ρcosθ+ρsinθ-1=0.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,在曲线C:
x=-1+cosθ
y=sinθ
(θ为参数)上求一点,使它到直线l的距离最小,并求出该点坐标和最小距离.
(3)(选修4-5:不等式选讲)
将12cm长的细铁线截成三条长度分别为a、b、c的线段,
(I)求以a、b、c为长、宽、高的长方体的体积的最大值;
(II)若这三条线段分别围成三个正三角形,求这三个正三角形面积和的最小值.

查看答案和解析>>

科目:高中数学 来源:2010年湖南省长沙一中高考数学一模试卷(理科)(解析版) 题型:填空题

已知直线l的极坐标方程是,若直线l与双曲线的一条渐近线平行,则实数a=   

查看答案和解析>>

科目:高中数学 来源:2009-2010学年上海市十三校高三(下)第二次联考数学试卷(理科)(解析版) 题型:解答题

已知直线l的极坐标方程是,若直线l与双曲线的一条渐近线平行,则实数a=   

查看答案和解析>>

科目:高中数学 来源:湖南省长沙市一中2010届高三第一次模拟考试(理) 题型:填空题

 已知直线l的极坐标方程是,若直线l与双曲线的一条渐近线平行,则实数a =      

 

查看答案和解析>>

同步练习册答案