精英家教网 > 高中数学 > 题目详情
已知点A(x12x1)、B(x22x2)是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
2x1+2x2
2
2
x1+x2
2
成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有
 
成立.
分析:根据函数y=2x的图象可知,此函数的图象是向下凹的,即可得到不等式
2x1+2x2
2
2
x1+x2
2
,再根据y=sinx(x∈(0,π))的图象的特征,即可类比得到相应的不等式.
解答:解:∵函数y=2x上任意两点A(a,a3),B(b,b3)线段AB在弧线段AB的上方,
函数f(x)=x3(x>0)的图象是向下凹的,
可得不等式
2x1+2x2
2
2
x1+x2
2

据此我们从y=sinx(x∈(0,π))图象可以看出:
y=sinx(x∈(0,π))图象是向上凸的,
故可知
sinx1+sinx2
2
<sin
x1+x2
2

故答案为
sinx1+sinx2
2
<sin
x1+x2
2
点评:本题主要考查类比推理的知识点,还考查了数形结合思想,解答本题的关键是熟练掌握对数函数图象的凸凹性,常用方法是图象法.
练习册系列答案
相关习题

科目:高中数学 来源:黄浦区二模 题型:填空题

已知点A(x12x1)、B(x22x2)是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
2x1+2x2
2
2
x1+x2
2
成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有______成立.

查看答案和解析>>

科目:高中数学 来源:黄浦区二模 题型:填空题

已知点A(x12x1)、B(x22x2)是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论
2x1+2x2
2
2
x1+x2
2
成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有______成立.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省福州市高三(上)期末数学试卷(文科)(解析版) 题型:填空题

已知点是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有    成立.

查看答案和解析>>

科目:高中数学 来源:2011年上海市黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知点是函数y=2x的图象上任意不同两点,依据图象可知,线段AB总是位于A、B两点之间函数图象的上方,因此有结论成立.运用类比思想方法可知,若点A(x1,sin1)、B(x2,sinx2)是函数y=sinx(x∈(0,π))的图象上的不同两点,则类似地有    成立.

查看答案和解析>>

同步练习册答案