精英家教网 > 高中数学 > 题目详情
(2012•奉贤区二模)过平面区域
x-y+2≥0
y+2≥0
x+y+2≤0
内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最小时,此时点P坐标为
(-4,-2)
(-4,-2)
分析:先依据不等式组
x-y+2≥0
y+2≥0
x+y+2≤0
,结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用圆的方程画出图形,确定α最小时点P的位置即可.
解答:解:如图阴影部分表示
x-y+2≥0
y+2≥0
x+y+2≤0
,确定的平面区域,
当P离圆O最远时,α最小,
此时点P坐标为:(-4,-2),
故答案为::(-4,-2).
点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知函数f(x)=
3
sin2x+sinxcosx
x∈[
π
2
, π]

(Ⅰ)求方程f(x)=0的根;
(Ⅱ)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)若集合A={-1,0,1},B={y|y=cosx,x∈A},则A∩B=
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)=
-1
-1

查看答案和解析>>

同步练习册答案