精英家教网 > 高中数学 > 题目详情
7.设命题p:存在x0∈(-2,+∞),使得6+x0=5.命题q:对任意x∈(-∞,0),x2+$\frac{4}{{x}^{2}}$≥4恒成立.
(1)写出命题p的否定.
(2)判断命题非p,p或q,p且q的真假,并说明理由.

分析 (1)根据特称命题否定的方法,结合已知中原命题,可得命题p的否定.
(2)根据p和q的真假,结合复合命题真假判断的真值表,可得答案.

解答 解:(1)命题p的否定为:对任意x∈(-2,+∞),6+|x0|≠5.…(4分)
(2)若x0∈(-2,+∞),6+|x0|≥6,
∴命题p为假命题.…(5分)
对任意$x∈(-∞,0),{x^2}+\frac{4}{x^2}≥2\sqrt{4}=4$,
当且仅当x2=2时取等号,故命题q为真命题.…(7分)
∴非p为真命题,p或q为真命题,p且q为假命题.…(10分)

点评 本题考查的知识点是全称命题和特称命题,命题的真假判断与应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A1B1C1D1中,E,F,G,M,N分别是B1C1,A1D1,A1B1,BD,B1C的中点,求证:
(1)MN∥平面CDD1C1
(2)平面EBD∥平面FGA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x3-$\frac{1}{2}$x2-2x+c
(1)当c=1时,求y=f(x)在点(0,f(0))处的切线方程;
(2)若当x∈[-1,2],不等式f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=sin2x+cos2x在[0,π]上的单调递减区间为[$\frac{π}{8}$,$\frac{5π}{8}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知对数函数y=logax(a>0且a≠1)的图象经过点(4,2)
(1)求函数的解析式.
(2)求f(1),f(8).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(理)64个正数排成8行8列,如图所示:在符号aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行都成等差数列,而每一列都成等比数列(且每列公比都相等).若a11=$\frac{1}{2}$,a24=1,a32=$\frac{1}{4}$.则a81a82…a88…aij=j($\frac{1}{2}$)i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.命题“若x2+y2=0,则x=y=0”的逆否命题为“若x,y中至少有一个不为0则x2+y2≠0”.
B.若命题$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,则?p:?x∈R,x2-x+1>0.
C.△ABC中,sinA>sinB是A>B的充要条件.
D.?φ∈R,函数f(x)=sin(2x+φ)都不是偶函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体外接球的表面积为(  )
A.B.πC.$\frac{π}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-(a+$\frac{1}{a}$)x+lnx,其中a>0.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;
(Ⅱ)当a≠1时,求函数f(x)的单调区间;
(Ⅲ)若a∈(0,$\frac{1}{2}$),证明对任意x1,x2∈[$\frac{1}{2}$,1](x1≠x2),$\frac{|f({x}_{1})-f({x}_{2})|}{{x}_{1}^{2}-{x}_{2}^{2}}$<$\frac{1}{2}$恒成立.

查看答案和解析>>

同步练习册答案