精英家教网 > 高中数学 > 题目详情
3、若函数f(x)在R上的图象关于原点对称,x∈[0,+∞)时,f(x)=x(1-x),则x∈(-∞,0]时f(x)=(  )
分析:先设x∈(-∞,0],则有-x∈[0,+∞)适合f(x)=x(1-x),再由函数f(x)在R上的图象关于原点对称,即为奇函数求解.
解答:解:设x∈(-∞,0],则-x∈[0,+∞)
∴f(-x)=-x(1+x)
又∵函数f(x)在R上的图象关于原点对称,即为奇函数
∴f(x)=-f(-x)=x(1+x)
故选A
点评:本题主要考查用函数的奇偶性来求对区间上的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、若函数f(x)在R上是减函数,那么f(2x-x2)的单调递增区间是
[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)在R上可导,且f(x)=x2+2f′(2)x+m,(m∈R),则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x2-x+b,x≥3
2x,x<3
,若函数f(x)在R上为增函数,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
(3-a)x-3,(x<7)
ax-6,(x≥7)
,若函数f(x)在R上单调递增,那么实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h⊆D,且f(x+h)≥f(x),则称f(x)为M上的“h阶高调函数”.给出如下结论:
①若函数f(x)在R上单调递增,则存在非零实数h使f(x)为R上的“h阶高调函数”;
②若函数f(x)为R上的“h阶高调函数”,则f(x)在R上单调递增;
③若函数f(x)=x2为区间[-1,+∞)上的“h阶高诬蔑财函数”,则h≥2;
④若函数f(x)在R上的奇函数,且x≥0时,f(x)=|x-1|-1,则f(x)只能是R上的“4阶高调函数”.
其中正确结论的序号为(  )

查看答案和解析>>

同步练习册答案