【题目】“共享单车”的出现,为我们提供了一种新型的交通方式.某机构为了调查人们对此种交通方式的满意度,从交通拥堵不严重的
城市和交通拥堵严重的
城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如图:
![]()
(1)根据茎叶图,比较两城市满意度评分的平均值的大小(不要求计算具体值,给出结论即可);
(2)若得分不低于85分,则认为该用户对此种交通方式“认可”,否则认为该用户对此种交通方式“不认可”,请根据此样本完成此列联表,并据此样本分析是否有
的把握认为城市拥堵与认可共享单车有关;
|
| 合计 | |
认可 | |||
不认可 | |||
合计 |
(3)若此样本中的
城市和
城市各抽取1人,则在此2人中恰有一人认可的条件下,此人来自
城市的概率是多少?
(参考公式:
)
| 0.10 | 0.05 | 0.010 | 0.001 |
| 2.706 | 3.841 | 6.635 | 10.828 |
科目:高中数学 来源: 题型:
【题目】已知双曲线C:
(a>0,b>0)的渐近线方程为y=±
x,右顶点为(1,0).
(1)求双曲线C的方程;
(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为
,当x0≠0时,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥
中,
为梯形,
,
,
,
,
,
.
![]()
(1)在线段
上有一个动点
,满足
且
平面
,求实数
的值;
(2)已知
与
的交点为
,若
,且平面
,求二面角
平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在矩形
中,
,
,点
、
分别在线段
、
上,且
,
,现将
沿
折到
的位置,连结
,
,如图2
![]()
(1)证明:
;
(2)记平面
与平面
的交线为
.若二面角
为
,求
与平面
所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的离心率为
,![]()
分别是椭圆的左右焦点,点
是椭圆上任意一点,且
.
![]()
(Ⅰ)求椭圆的标准方程;
(Ⅱ)在直线
上是否存在点Q,使以
为直径的圆经过坐标原点O,若存在,求出线段
的长的最小值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知U=R且A={x|a2x2-5ax-6<0},B{x||x-2|≥1}.
(1)若a=1,求(UA)
B;
(2)求不等式a2x2-5ax-6<0(a∈R)的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com