精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的最小正周期。
(2)求函数的最大值及取最大值时x的集合.

(1);(2) 取最大值为的集合为.

解析试题分析:(1)先将函数f(x)化简为,根据T=可得答案;(2)令2x+=2kπ+,可直接得到答案.
解:(1)
所以函数的最小正周期为             .4分
(2)由(1)知当,即时,取最大值为.
因此取最大值时的集合为       ..8分
考点:三角函数的周期性及其求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

将函数的图形向右平移个单位后得到的图像,已知的部分图像如图所示,该图像与y轴相交于点,与x轴相交于点P、Q,点M为最高点,且的面积为.
(1)求函数的解析式;
(2)在中,分别是角A,B,C的对边,,且,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数的图象的两相邻对称轴间的距离为.
(1)求的值;
(2)若,求的值;
(3)若,且有且仅有一个实根,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f (x)=cos(2x+)+sin2x+2a
(1)求函数f (x)的单调递增区间
(2)当0≤x≤时,f (x)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的最小正周期和单调递增区间;
(2)若函数图象上的两点的横坐标依次为,为坐标原点,求的外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)设是函数图象的一条对称轴,求的值.
(2)求函数的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数.
(1)求函数的周期;
(2)如果的最小值为,求的值,并求此时的最大值及图像的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的部分图像如图所示.

(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)的内角分别是A,B,C.若f(A)=1,,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设向量
(1)若,求x的值
(2)设函数,求f(x)的最大值

查看答案和解析>>

同步练习册答案