精英家教网 > 高中数学 > 题目详情

(13分)设函数,函数.
(1)求在[0,1]上的值域;
(2)若对于任意[0,1],总存在[0,1],使得成立,求的取值范围.

(1)

……………………………………..4分

 ……6分


    …………………..8分




…………………….12分
综上,     ……………………………13分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=x2-2|x|-1 (-3≤x≤3),
(1)证明f(x)是偶函数;
(2)画出这个函数的图象;
(3)指出函数f(x)的单调区间,并说明在各个单调区间上f(x)是增函数还是减函数;
(4)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|1-
1x
|,x>0

(1)证明:当0<a<b,且f(a)=f(b)时,ab>1;
(2)点P (x0,y0) (0<x0<1 )在曲线y=f(x)上,求曲线在点P处的切线与x轴和y轴的正向所围成的三角形面积表达式(用x0表达).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(1+x)-ax,x∈(0,+∞)
(1)求f(x)的单调区间;
(2)求证:ln(1+n)<1+
1
2
+
1
3
+…+
1
n
(n∈N+)

(3)若|m|≥2,试比较:ln(1+
1
1×2
)+ln(1+
1
2×3
)+…+ln[1+
1
n×(n+1)
]+
1
n+1
(n∈N+)与m2-3大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•吉林二模)设函数f(x)=
1-a
2
x2+ax-lnx(a∈R)

(Ⅰ) 当a=1时,求函数f(x)的极值;
(Ⅱ)当a>1时,讨论函数f(x)的单调性.
(Ⅲ)若对任意a∈(3,4)及任意x1,x2∈[1,2],恒有
(a2-1)
2
m+ln2>|f(x1)-f(x2)|
成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)设函数f(x)和x都是定义在集合
2
上的函数,对于任意的
2
x,都有x成立,称函数x与y在l上互为“l函数”.
(1)函数f(x)=2x与g(x)=sinx在M上互为“H函数”,求集合M;
(2)若函数f(x)=ax(a>0且a≠1)与g(x)=x+1在集合M上互为“x函数”,求证:a>1;
(3)函数m与m在集合M={x|x>-1且x≠2k-3,k∈N*}上互为“m函数”,当m时,m,且m在m上是偶函数,求函数m在集合M上的解析式.

查看答案和解析>>

同步练习册答案