精英家教网 > 高中数学 > 题目详情
11.以(1,-1)为圆心且与直线x+2=0相切的圆的方程为(  )
A.(x-1)2+(y+1)2=9B.(x-1)2+(y+1)2=3C.(x+1)2+(y-1)2=9D.(x+1)2+(y-1)2=3

分析 根据题意,分析可得圆心到直线x+2=0就是圆的半径r,计算可得r的值,将圆心坐标以及半径r代入圆的标准方程即可得答案.

解答 解:根据题意,设圆心为C,即C(1,-1),
C到直线x+2=0就是圆的半径r,则r=|1-(-2)|=3;
故圆的标准方程为:(x-1)2+(y+1)2=9;
故选:A.

点评 本题考查圆的标准方程,关键是求出圆的半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有2个子集,则a的取值构成的集合为{0,1,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过抛物线$y=\frac{1}{4}{x^2}$的焦点F作一条倾斜角为30°的直线交抛物线于A、B两点,则|AB|=$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若$\overrightarrow{a}$=(2,-3),则与向量$\overrightarrow{a}$垂直的单位向量的坐标为(  )
A.(3,2)B.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)
C.($\frac{3\sqrt{13}}{13}$,$\frac{2\sqrt{13}}{13}$)或(-$\frac{3\sqrt{13}}{13}$,-$\frac{2\sqrt{13}}{13}$)D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在四面体ABCD中,AB,AC,AD两两互相垂直,给出下列两个命题:
①$\overrightarrow{AB}$•$\overrightarrow{CD}$=$\overrightarrow{AC}$•$\overrightarrow{BD}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$,
②($\overrightarrow{AB}$+$\overrightarrow{AD}$+$\overrightarrow{AC}$)2=$\overrightarrow{AB}$2+$\overrightarrow{AC}$2+$\overrightarrow{AD}$2
则下列关于以上两个命题的真假性判断正确的为(  )
A.①真、②真B.①真、②假C.①假、②假D.①假、②真

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.把a,b,c,d排成形如$({\begin{array}{l}a&b\\ c&d\end{array}})$的式子,称为二行二列矩阵,定义矩阵的一种运算该$({\begin{array}{l}a&b\\ c&d\end{array}}).({\begin{array}{l}x\\ y\end{array}})=({\begin{array}{l}ax+by\\ cx+dy\end{array}})$,运算的几何意义为:平面上的点(x,y)在矩阵$({\begin{array}{l}a&b\\ c&d\end{array}})$的作用下变换成点(ax+by,cx+dy).
(1)求点(2,3)在$({\begin{array}{l}0&1\\ 1&0\end{array}})$的作用下形成的点的坐标.
(2)若曲线x2+4xy+2y2=1在矩阵$({\begin{array}{l}1&a\\ b&1\end{array}})$的作用下变成曲线x2-2y2=1,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.双曲线2x2-y2=8的实轴长是(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非负实数a,b,c满足ab+bc+ca=1,求证:$\frac{1}{a+b}$$+\frac{1}{b+c}$$+\frac{1}{c+a}$$≥\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.曲线C1的极坐标方程为ρ=R(R>0),曲线C2的参数方程为$\left\{\begin{array}{l}{x=2+si{n}^{2}α}\\{y=si{n}^{2}α}\end{array}\right.$(α为参数),若C1与C2有公共点,则R的取值范围是(  )
A.[2,+∞)B.[$\sqrt{2}$,+∞)C.[2,$\sqrt{10}$]D.[2,3]

查看答案和解析>>

同步练习册答案