精英家教网 > 高中数学 > 题目详情
某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜6吨0.9万元0.3万元
问该农户如何安排种植计划,才能使一年的种植总利润(总利润=总销售收入-总种植成本)最大,最大总利润是多少万元?
考点:简单线性规划的应用
专题:应用题,不等式的解法及应用
分析:根据条件,设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,建立目标函数和约束条件,根据线性规划的知识求最优解即可.
解答: 解:设黄瓜和韭菜的种植面积分别为x,y亩,总利润为z万元,
则目标函数为z=(0.55×4x-1.2x)+(0.3×6y-0.9y)=x+0.9y.
线性约束条件为
x+y≤50
1.2x+0.9y≤54
x≥0,y≥0

x+y≤50
4x+3y≤180
x≥0,y≥0
,作出不等式组
x+y≤50
4x+3y≤180
x≥0,y≥0
表示的可行域,求得点 A(0,50),B(30,20),C(0,45).
平移直线z=x+0.9y,可知当直线z=x+0.9y 经过点B(30,20),
即x=30,y=20时,z取得最大值,且Zmax=48(万元).
故黄瓜和韭菜的种植面积应该分别是30亩、20亩时,利润最大.
点评:本题主要考查生活中的优化问题,利用条件建立二元二次不等式组,利用线性规划的知识进行求解是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当点(x,y)在直线x+y-3=0上移动时,表达式2x+2y的最小值为(  )
A、6
B、7
C、4
2
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3sin(ωx+
π
6
)(ω>0),在区间[0,2]上存在唯一x1使f(x1)=3,存在唯一x2使f(x2)=-3,则ω的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图所示的伪代码:若输入x的值为12,则p=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于实数x,符号[x]不超过x的最大整数,例如[π]=3,[-3.5]=-4,定义函数f(x)=x-[x],则下列结论正确的是(  )
A、方程f(x)=k(k∈R)有且仅有一个解
B、函数f(x)的最大值为1
C、函数f(x)是增函数
D、函数f(x)的最小值为0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知每项均大于零的数列{an}中,首项a1=1且前n项的和Sn满足Sn
S(n+1)
-Sn+1
Sn
=-2
SnS(n+1)
(n∈N),则a51=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某天甲、乙两同学约好在晚上8点到9点之间在某地会面,假定两人到达指定地点的时刻是等可能的且相互独立的,并约定先到者等待后到者时间是15分钟,之后就可以离去,问两人能够见面的概率有多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,若a2,b2,c2成等差数列,则角B的范围为(  )
A、(0,
π
2
B、(0,
π
3
]
C、[
π
3
π
2
D、(
π
3
,π)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程
x2
m+2
-
y2
m-2
=1表示焦点在y轴上的椭圆,则实数m的取值范围为
 

查看答案和解析>>

同步练习册答案