精英家教网 > 高中数学 > 题目详情

过抛物线y=x2的顶点作互相垂直的两条弦OA、OB,抛物线的顶点O在直线AB上的射影为P,求动点P的轨迹方程.

解:设P(x,y),A(x1,y1),B(x2,y2),
lAB:y=kx+b,(b≠0)由消去y得:x2-kx-b=0,x1x2=-b.
∵OA⊥OB,∴,∴x1x2+y1y2=0,
所以x1x2+(x1x22=-b+(-b)2=0,b≠0,∴b=1,∴直线AB过定点M(0,1),
又OP⊥AB,∴点P的轨迹是以OM为直径的圆(不含原点O),
∴点P的轨迹方程为
分析:设P(x,y),欲求这条曲线的方程,只须求出x,y之间的关系即可,利用OA⊥OB,结合方程根与系数的关系,将此条件用坐标代入化简即得曲线的方程.
点评:本题主要考查了直接法求轨迹方程,直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网过抛物线y=x2的顶点作互相垂直的两条弦OA、OB,抛物线的顶点O在直线AB上的射影为P,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:《第2章 圆锥曲线与方程》2013年单元测试卷(3)(解析版) 题型:解答题

过抛物线y=x2的顶点作互相垂直的两条弦OA、OB,抛物线的顶点O在直线AB上的射影为P,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年广东省广州市白云中学高二(上)调研数学试卷(解析版) 题型:解答题

过抛物线y=x2的顶点作互相垂直的两条弦OA、OB,抛物线的顶点O在直线AB上的射影为P,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y= x2 的顶点作互相垂直的两条弦OA、OB, 抛物线的顶点O在直线AB上的射影为P, 求动点P的轨迹方程.

查看答案和解析>>

同步练习册答案