精英家教网 > 高中数学 > 题目详情
设等差数列{an}满足:公差d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的一项.若a1=35,则d的所有可能取值之和为   
【答案】分析:先求出数列的通项公式,求出数列{an}中任意两项之和,根据数列{an}中任意两项之和仍是该数列中的一项求出d=,再结合k,m,n,d∈N*,即可求出d的所有可能取值进而求出结论.
解答:解:设等差数列的公差为d,若a1=35,=243,则an=243+(n-1)d.
所以数列{an}中任意两项之和am+an=243+(m-1)d+243+(n-1)d=486+(m+n-2)d.
设任意一项为ak=243+(k-1)d.
则由am+an=ak 可得 243+(m+n-k-1)d=0,化简可得 d=
再由k,m,n,d∈N*,可得 k+1-m-n=1,3,9,27,81,243,
∴d=243,81,27,9,3,1,
则d的所有可能取值之和为 364,
故答案为 364.
点评:本题主要考查等差数列的性质.解决问题的关键在于利用数列{an}中任意两项之和仍是该数列中的一项求出d=,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设等差数列{an}满足a5=11,a12=-3,{an}的前n项和Sn的最大值为M,则lgM=(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足:
sin2a3-cos2a3+cos2a3cos2a6-sin2a3sin2a6
sin(a4+a5)
=1
,公差d∈(-1,0),若当且仅当n=9时,数列{an}的前n项和Sn取最大值,则首项a1的取值范围为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.
(1)求数列{an}的通项公式;
(2)求Sn的最大值及其相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•盐城模拟)设等差数列{an}满足:公差d∈N*,an∈N*,且{an}中任意两项之和也是该数列中的一项.若a1=35,则d的所有可能取值之和为
364
364

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足3a8=5a13,且a1>0,Sn是前n项和,则前
20
20
项和最大?

查看答案和解析>>

同步练习册答案