精英家教网 > 高中数学 > 题目详情
5.已知动点P(x,y)到定点A(2,0)的距离与到定直线l:x=-2的距离相等.
(Ⅰ) 求动点P的轨迹C的方程;
(Ⅱ) 已知点B(-3,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.

分析 (Ⅰ) 根据抛物线的定义和题设中的条件可知点P是以F(2,0)为焦点,以x=-2为准线的抛物线,焦点到准线的距离p=4,进而求得抛物线方程.
(Ⅱ)设P(x1,y1),Q(x2,y2),由题意,直线PQ的方程代入化简,利用角平分线的性质可得kPB=-kQB,可化为:-16tm+(3+m)8t=0,所以:m=3,l:x=ty+3,即可得到定点.

解答 解:(Ⅰ)设动圆圆心P(x,y),则由抛物线定义易得:点P是以F(2,0)为焦点,以x=-2为准线的抛物线,
动圆圆心的轨迹方程为:y2=8x
(Ⅱ) 设两点P(x1,y1),Q(x2,y2),设不垂直于x轴的直线:l:x=ty+m(t≠0),
则$\left\{{\begin{array}{l}{x=ty+m}\\{{y^2}=8x}\end{array}}\right.$有:y2-8ty-8m=0,所以:y1+y2=8t,y1y2=-8m
因为x轴是∠PBQ的角平分线,
所以:kBP+kBQ=0,即:$\frac{y_1}{{{x_1}+3}}+\frac{y_2}{{{x_2}+3}}=0$,即:2ty1y2+(m+3)(y1+y2)=0
则:-16tm+(3+m)8t=0,
所以:m=3,l:x=ty+3,
所以直线l过定点(3,0).

点评 本题综合考查了抛物线的定义与标准方程、直线与抛物线相交问题、直线方程及过定点问题、斜率计算公式等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.△ABC中,若c2-a2=b2-ab,则内角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知P是函数y=x2图象上的一点,A(1,-1),则$\overrightarrow{OP}•\overrightarrow{OA}$的最大值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.三棱锥S-ABC的顶点都在同一球面上,且SA=AC=SB=BC=2$\sqrt{2}$,SC=4,则该球的体积为$\frac{32}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a∈R,若方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则此圆心坐标(  )
A.(-2,-4)B.$(-\frac{1}{2},-1)$C.(-2,-4)或$(-\frac{1}{2},-1)$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点(1,2)和(-1,m)关于kx-y+3=0对称,则m+k=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F是抛物线E:y2=4x的焦点,过点F的直线交抛物线E于P,Q两点,线段PQ的中垂线仅交x轴于点M,则使|MF|=λ|PQ|恒成立的实数λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线方程为x2=2py,且过点(1,4),则抛物线的焦点坐标为(  )
A.(1,0)B.($\frac{1}{16}$,0)C.(0,$\frac{1}{16}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和最低点分别为(x0,2),(x0+$\frac{π}{2}$,-2).
(1)求函数y=f(x)的解析式和单调递增区间;
(2)若当0≤x≤$\frac{11π}{12}$时,方程f(x)-m=0有两个不同的实数根α,β,试讨论α+β的值.

查看答案和解析>>

同步练习册答案