精英家教网 > 高中数学 > 题目详情
16.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)设f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函数h(x)与g(x)在x=x0处的切线平行,求这两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

分析 (Ⅰ)运用定积分的运算法则和三角函数的特殊值,可得m=-1,分别求出g(x),h(x)的导数,求得切线的斜率,切点,再由点斜式方程可得切线的方程,再由两直线平行间的距离,计算即可得到所求;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,即为x2-mx-lnx≥0,由x>0,可得m≤x-$\frac{lnx}{x}$,设F(x)=x-$\frac{lnx}{x}$,求出导数,讨论x>1,0<x<1导数的符号,判断单调性,可得最小值,即可得到m的范围.

解答 解:(Ⅰ)f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx=m(sinx-cosx)|${\;}_{\frac{π}{2}}^{t}$
=m[(sint-cost)-(1-0)]=m(sint-cost-1),
f(2016π)=2,可得m(-1-1)=2,
解得m=-1,
则h(x)=x2+x的导数为h′(x)=2x+1,
g(x)=lnx的导数为g′(x)=$\frac{1}{x}$,
由题意可得2x0+1=$\frac{1}{{x}_{0}}$,解得x0=$\frac{1}{2}$(-1舍去),
即有h(x)在x=$\frac{1}{2}$处的切线的方程为y-$\frac{3}{4}$=2(x-$\frac{1}{2}$),即为2x-y-$\frac{1}{4}$=0;
g(x)在x=$\frac{1}{2}$处的切线的方程为y-ln$\frac{1}{2}$=2(x-$\frac{1}{2}$),即为2x-y-1-ln2=0.
则两切线间的距离为d=$\frac{|1+ln2-\frac{1}{4}|}{\sqrt{1+4}}$=$\frac{(3+4ln2)\sqrt{5}}{20}$;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,
即为x2-mx-lnx≥0,由x>0,可得m≤x-$\frac{lnx}{x}$,
设F(x)=x-$\frac{lnx}{x}$,F′(x)=1-$\frac{1-lnx}{{x}^{2}}$=$\frac{{x}^{2}-1+lnx}{{x}^{2}}$,
当x>1时,F′(x)>0,F(x)递增;当0<x<1时,F′(x)<0,F(x)递减.
即有x=1处取得极小值,且为最小值1,
则有m≤1,即m的取值范围是(-∞,1].

点评 本题考查导数的运用:求切线的方程和单调区间、极值和最值,考查不等式恒成立问题的解法,注意运用参数分离和构造函数运用单调性求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=sinθ+cosθ}\\{y=sin2θ}\end{array}\right.$(θ为参数),若以直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为常数).当曲线N与曲线M只有一个公共点时,t的取值范围为$\left\{{t\left|{1-\sqrt{2}<t≤1+\sqrt{2}或t=-\frac{5}{4}}\right.}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.①若f(x)是[-4,4]上的单调增函数,且f(2x-1)<f(x+2),求x的取值范围.
②已知函数f(x)=-x2+|x|,x∈R.将f(x)化成分段函数形式,画出图象并由图象写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.圆C的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{3}{4}π)$,极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合,且长度单位相同,直线l的参数方程为$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数).
(1)求C的直角坐标方程及圆心的极坐标
(2)l与C交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(1+tan12°)(1-tan147°)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x-1-2sinπx的所有零点之和等于5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知{an}是各项项都为正数的数列,其前n项和为Sn,且满足2anSn-an2=1
(Ⅰ)证明{Sn2}是等差数列,并求数列{an}的通项公式;
(Ⅱ)求数列{Sn2xn-1}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.关于x的不等式2x≤2x+1-$\frac{1}{2}$解集是{x|x≥-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={({\frac{1}{2}})^x}$在区间[0,1]上的最大值与最小值的和为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案