精英家教网 > 高中数学 > 题目详情

已知函数。求函数的单调递增区间和最小值;

【解析】第一问中利用三角函数的二倍角公式求解运算得到性质。利用二倍角公式求解

的最小值为-2

 

【答案】

的最小值为-2

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3-
a+1
2
x2+x+b
,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(1+x)+lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)若f(x)=lgg(x),判断函数g(x)在(O,1)内的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x+1|+x(a∈R).
(Ⅰ)当a=2时,f(x)在[b,+∞)上为增函数,求b的取值范围;
(Ⅱ)若函数f (x)在 R 上具有单调性,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
1-mx
x+1
(a>0,a≠1,m≠-1),是定义在(-1,1)上的奇函数.
(I)求f(0)的值和实数m的值;
(II)当m=1时,判断函数f(x)在(-1,1)上的单调性,并给出证明;
(III)若f(
1
2
)>0
且f(b-2)+f(2b-2)>0,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2
+2x,g(x)=lnx.
(1)如果函数y=f(x)在[1,+∞)上是单调减函数,求a的取值范围;
(2)是否存在实数a>0,使得方程
g(x)
x
=f(x)-(2a+1)在区间(
1
e
,e)内有且只有两个不相等的实数根?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案