精英家教网 > 高中数学 > 题目详情
(2012•温州二模)已知实数x,y满足x2+xy+y2=3,则x2-xy+y2的最小值为
1
1
分析:观察可看出未知数的值没有直接给出,而是隐含在题中,需要对所求代数式进行整理然后求解.
解答:解:设x2-xy+y2=A
∵x2+xy+y2=3
两式相加可得,2(x2+y2)=3+A      (1)
两式相减得到:2xy=3-A      (2)
(1)+(2)×2得:
2(x2+y2)+4xy=2(x+y)2=9-A≥0
∴A≤9
(1)-(2)×2得:
2(x-y)2=3A-3≥0,
∴A≥1
综上:1≤A≤9,即最小值是1
点评:本题考查了完全平方公式,关键是设一个未知数,然后利用完全平方公式相加或相减,再根据平方数非负数的性质得出它的最大值和最小值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•温州二模)已知是两条m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)若集合A={x|x<1},B={0,1,2},则(?RA)∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)若a,b都是实数,则“a3-b3>0”是“a-b>0”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)已知i为虚数单位,则复数
1
1-i
在复平面内对应的点在(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•温州二模)某程序框图如图所示,该程序运行后输出的S的值是(  )

查看答案和解析>>

同步练习册答案