精英家教网 > 高中数学 > 题目详情

【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:

第一次

第二次

第三次

第四次

第五次

参会人数 (万人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根据所给5组数据,求出关于的线性回归方程.

(2)已知购买原材料的费用 (元)与数量 (袋)的关系为

投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).

参考公式: .

参考数据: .

【答案】(1);(2)餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11870元.

【解析】试题分析:(1)根据公式求出b,再将样本中心代入求出a,进而得到回归方程;(2,利润为赚的钱减去花出去的钱,根据分段函数的表达式,分段列出利润表达式,分别讨论利润的最值,最终取分段函数中较大的利润值.

解析:

(1)由所给数据可得:

关于的线性回归方程为.

(2)由(1)中求出的线性回归方程知,当时, ,即预计需要原材料袋,

因为,所以当时,

利润,当时,

时,利润,当时, .

综上所述,餐厅应该购买36袋原材料,才能使利润获得最大,最大利润为11870元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了鼓励市民节约用电,实行“阶梯式”电价,某边远山区每户居民月用电量划分为三档:月用电量不超过150度,按0.6元/度收费,超过150度但不超过250度的部分每度加价0.1元,超过250度的部分每度再加价0.3元收费.

(1)求该边远山区某户居民月用电费用(单位:元)关于月用电量(单位:度)的函数解析式;

(2)已知该边远山区贫困户的月用电量(单位:度)与该户长期居住的人口数(单位:人)间近似地满足线性相关关系:的值精确到整数),其数据如表:

14

15

17

18

161

168

191

200

现政府为减轻贫困家庭的经济负担,计划对该边远山区的贫困家庭进行一定的经济补偿,给出两种补偿方案供选择:一是根据该家庭人数,每人每户月补偿6元;二是根据用电量每人每月补偿为用电量)元,请根据家庭人数分析,一个贫困家庭选择哪种补偿方式可以获得更多的补偿?

附:回归直线中斜率和截距的最小二乘法估计公式分别为:

.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将从点M出发沿纵、横方向到达点N的任一路径称为M到N的一条“L路径”.如图所示的路径MM1M2M3N与路径MN1N都是M到N的“L路径”.某地有三个新建居民区,分别位于平面xOy内三点A(3,20),B(﹣10,0),C(14,0)处.现计划在x轴上方区域(包含x轴)内的某一点P处修建一个文化中心.

(1)写出点P到居民区A的“L路径”长度最小值的表达式(不要求证明);
(2)若以原点O为圆心,半径为1的圆的内部是保护区,“L路径”不能进入保护区,请确定点P的位置,使其到三个居民区的“L路径”长度之和最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数.

(1)求不等式的解集;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的焦点为,点是抛物线上一点,且

(1)求的值;

(2)若为抛物线上异于的两点,且.记点到直线的距离分别为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量.记一天中从甲地去乙地的旅客人数不超过900的概率为p0
(1)求p0的值;
(参考数据:若X~N(μ,σ2),有P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974.)
(2)某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次,A,B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要以不小于p0的概率运完从甲地去乙地的旅客,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的极值;

2)当时,讨论的单调性;

3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中.

(Ⅰ)当时,求函数的极值;

(Ⅱ)当时,证明:函数不可能存在两个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个极值点,且,证明:.

查看答案和解析>>

同步练习册答案