精英家教网 > 高中数学 > 题目详情
已知函数f(x)=sin(x-
π
6
)+cosx.
(1)求函数f(x)的最小正周期;
(2)若α是第一象限角,且f(α+
π
3
)=
4
5
,求tan(α-
π
4
)的值.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先对三角函数关系式进行恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的最小正周期.
(2)利用(1)求出的函数关系式,进一步求出函数的正弦值和余弦值,进一步求出函数的正切值,最后求出结果.
解答: 解:(1)f(x)=sin(x-
π
6
)+cosx
=
3
2
sinx-
1
2
cosx+cosx

=
3
2
sinx+
1
2
cosx

=sin(x+
π
6
)

所以:函数f(x)的最小正周期为:T=
1
=2π

(2)由于f(x)=sin(x+
π
6
)

则:f(α+
π
3
)=sin(α+
π
2
)=cosα=
4
5

由于α是第一象限角
所以:sinα=
3
5

则:tanα=
3
4

则:tan(α-
π
4
)=
tanα-1
1+tanα
=-
1
7
点评:本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的周期的应用,三角函数的求值问题,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求下列函数的周期
(1)y=-2cos(-
1
2
x-1);
(2)y=|sin2x|

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,⊙O的半径为6,线段AB与⊙相交于点C、D,AC=4,∠BOD=∠A,OB与⊙O相交于点.
(1)求BD长;
(2)当CE⊥OD时,求证:AO=AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx(sinx-
3
cosx)+
3
2

(Ⅰ)求函数f(x)的最小正周期及单调递减区间
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

任取实数a,b∈[-1,1],则a,b满足|b|≥|
a
2
|的概率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个正四棱锥的左视图是一个边长为2的正三角形(如图),则该正四棱锥的体积是(  )
A、1
B、
3
C、
4
3
3
D、2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正六边形ABCDEF中,AB=2,则(
BC
-
BA
)•(
AF
+
BC
)=(  )
A、-6
B、-2
3
C、2
3
D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

F是双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点,过点F向C的一条渐近线引垂线,垂足为 A,交另一条渐近线于点 B.若2
AF
=
FB
,则C的离心率是(  )
A、
2
B、2
C、
2
3
3
D、
14
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若向量
a
b
不共线,则下列各组向量中,可以作为一组基底的是(  )
A、
a
-2
b
与-
a
+2
b
B、3
a
-5
b
不与6
a
-10
b
C、
a
-2
b
与5
a
+7
b
D、2
a
-3
b
1
2
a
-
3
4
b

查看答案和解析>>

同步练习册答案