精英家教网 > 高中数学 > 题目详情
(2013•枣庄一模)设F1,F2是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左,右两个焦点,若双曲线右支上存在一点P,使(
OP
+
OF2
)•
F2P
=0(O为坐标原点),且|
PF1
|=
3
|
PF2
|,则双曲线的离心率为(  )
分析:取PF2的中点A,利用
OP
+
OF2
=2
OA
,可得
OA
F2P
,从而可得PF1⊥PF2,利用双曲线的定义及勾股定理,可得结论.
解答:解:取PF2的中点A,则
OP
+
OF2
=2
OA

∵(
OP
+
OF2
)•
F2P
=0,∴2
OA
F2P
=0
OA
F2P

∵O是F1F2的中点
∴OA∥PF1
∴PF1⊥PF2
∵|PF1|=
3
|PF2|,
∴2a=|PF1|-|PF2|=(
3
-1)|PF2|,
∵|PF1|2+|PF2|2=4c2
∴c=|PF2|,
∴e=
c
a
=
2
3
-1
=
3
+1

故选B
点评:本题考查向量知识的运用,考查双曲线的定义,利用向量确定PF1⊥PF2是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•枣庄一模)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4、12、8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),⊙O:x2+y2=b2,点A,F分别是椭圆C的左顶点和左焦点,点P是⊙O上的动点.
(1)若P(-1,
3
),PA是⊙O的切线,求椭圆C的方程;
(2)是否存在这样的椭圆C,使得
PA
PF
是常数?如果存在,求C的离心率,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)已知函数f(x)=x2+1的定义域为[a,b](a<b),值域为[1,5],则在平面直角坐标系内,点(a,b)的运动轨迹与两坐标轴围成的图形的面积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)设z=x+y,其中x,y满足
x+2y≥0
x-y≤0
0≤y≤k
,若z的最大值为6,则z的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•枣庄一模)下列命题的否定为假命题的是(  )

查看答案和解析>>

同步练习册答案