精英家教网 > 高中数学 > 题目详情
设椭圆M:(a>b>0)右顶点和上顶点分别为A,B,直线AB与直线y=-x相交于点P,若点P在抛物线y2=-ax上,则椭圆M的离心率等于   
【答案】分析:求出椭圆的右顶点和上顶点分别为A,B,通过求出直线AB与直线y=-x相交于点P,点P在抛物线y2=-ax上,得到a,b的关系式,即可求出椭圆的离心率.
解答:解:椭圆M:(a>b>0)右顶点A(a,0)和上顶点分别为B(0,b),
直线AB的方程与直线y=-x相交于点P(),
点P在抛物线y2=-ax上,所以
b=a-b,a=2b,所以e===
故答案为:
点评:本题是中档题,考查椭圆的基本性质,直线与直线的交点,考查计算能力,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源:2008-2009学年湖北省天门中学高二(下)5月月考数学试卷(A卷)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证|AB|=
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州七中高考数学模拟试卷(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证|AB|=
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省四校高三第二次联考数学试卷(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=x+m交椭圆于A、B两点,椭圆上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学仿真押题试卷01(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=x+m交椭圆于A、B两点,椭圆上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年山东省高考数学模拟试卷1(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

同步练习册答案