精英家教网 > 高中数学 > 题目详情

已知{an}是公差不为0的等差数列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},则an=________.

2n
分析:通过不等式的解集,求出列出方程组,利用数列是等差数列,求出首项与公差,然后求出通项公式.
解答:{an}是公差不为0的等差数列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},
所以a12-a3a1+a4=0,a22-a3a2+a4=0,设数列的公差为d,
a12-(a1+2d)a1+a1+3d=0,(d+a12-(a1+2d)(a1+d)+a1+3d=0,
解得a1=d=2,
所以数列的通项公式为:an=2n.
故答案为:2n.
点评:本题考查等差数列的性质,根与系数的关系,等差数列的通项公式的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)求数列{2an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,{bn}等比数列,满足b1=a12,b2=a22,b3=a32
(I)求数列{bn}公比q的值;
(II)若a2=-1且a1<a2,求数列{an}公差的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(Ⅰ)求数列{an}的通项;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,数列{bn}的前n项和Tn,证明:Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)求数列{
1anan+1
}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不为0的等差数列,{bn}是等比数列,其中a1=b1=1,a4=7,a5=b2,且存在常数α,β使得对每一个正整数n都有an=logαbn+β,则α+β=
4
4

查看答案和解析>>

同步练习册答案