精英家教网 > 高中数学 > 题目详情
命题p:集合{x|
x-2
x-1
≤0}
等于集合{x|(x-2)(x-1)≤0}或集合{x|(x2+1)(x-1)>0}等于集合{x|
1
x-1
>0}
.则命题p真假是
 
(用“真”或“假”填空)
分析:解不等式分别求出四个集合,根据集合相等的定义及复合命题真假判断的真值表,可得答案.
解答:解:集合{x|
x-2
x-1
≤0}
=(1,2]
集合{x|(x-2)(x-1)≤0}=[1,2]
故集合{x|
x-2
x-1
≤0}
等于集合{x|(x-2)(x-1)≤0}错误;
{x|(x2+1)(x-1)>0}=(1,+∞)
集合{x|
1
x-1
>0}
=(1,+∞)
故集合{x|(x2+1)(x-1)>0}等于集合{x|
1
x-1
>0}
正确
则命题p为真命题
故答案为:真
点评:本题以命题的真假判断为载体考查了解不等式和复合命题真假判断的真值表,难度不大,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:f (x)=
1-x3
,且|f(a)|<2;命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅,求实数a的取值范围,使p、q中有且只有一个为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:集合{x|x=(-1)n,n∈N}只有3个真子集,q:集合{y|y=x2+1,x∈R }与集合{x|y=x+1}相等.则下列新命题:
①p或q;
②p且q;
③非p;
④非q.
其中真命题的个数为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:集合A={x|2x2-3x+1≤0,x∈R}}
命题q:集合B={x|x2-(2a+1)x+a(a+1)≤0,x∈R,a∈R}
命题s:集合C={m|方程x2+(m-3)x+m=0的两个根一根大于1,一根小于0}
(1)若A∩B=[
45
,1
],实数a的值;
(2)若q是?s的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题p:集合{x|x=(-1)n,n∈N}只有3个真子集,q:集合{y|y=x2+1,x∈R }与集合{x|y=x+1}相等.则下列新命题:
①p或q;
②p且q;
③非p;
④非q.
其中真命题的个数为______.

查看答案和解析>>

同步练习册答案